A087650 a(n) = Sum_{k=0..n} (-1)^(n-k)*Bell(k).
1, 0, 2, 3, 12, 40, 163, 714, 3426, 17721, 98254, 580316, 3633281, 24011156, 166888166, 1216070379, 9264071768, 73600798036, 608476008123, 5224266196934, 46499892038438, 428369924118313, 4078345814329010, 40073660040755336
Offset: 0
Keywords
Examples
G.f. = 1 + 2*x^2 + 3*x^3 + 12*x^4 + 40*x^5 + 163*x^6 + 714*x^7 + ...
Programs
-
Mathematica
f[n_] := Sum[ StirlingS2[n, k], {k, 1, n}]; Table[(-1)^n + Sum[(-1)^(n - k)*f[k], {k, 0, n}], {n, 0, 23}] (* Robert G. Wilson v *) Needs["DiscreteMath`Combinatorica`"]; Table[ Sum[(-1)^(n - k)*BellB[k], {k, 0, n}], {n, 0, 23}] (* Robert G. Wilson v *)
-
Maxima
makelist(sum((-1)^(n-k)*belln(k),k,0,n),n,0,40); /* Emanuele Munarini, Sep 27 2012 */
-
PARI
vector(30, n, n--; sum(k=0, n, (-1)^(n-k)*polcoeff(sum(i=0, k, prod( j=1, i, x / (1 - j*x)), x^k * O(x)), k))) \\ Altug Alkan, Oct 30 2015
-
Sage
def A087650_list(len): # After the formula of David Callan. if len == 1: return [1] if len == 2: return [1,0] R = []; A = [1]; p = -1 for i in (0..len-1): A.append(A[0] - A[i]) A[i] = A[0] for k in range(i, 0, -1): A[k-1] += A[k] p = -p R.append(A[i+1] + p) return R A087650_list(24) # Peter Luschny, Aug 28 2014
Formula
E.g.f.: exp(-x)*((exp(x)-1)*exp(exp(x)-1)+1).
a(n) = A000296(n+1) + (-1)^n. - David Callan, Aug 27 2014
G.f.: 1/(1+x)/W(0), where W(k) = 1 - x/(1 - x*(k+1)/W(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 10 2014
a(0) = 1; a(n) = Sum_{k=1..n-1} binomial(n,k) * a(k-1). - Ilya Gutkovskiy, Mar 04 2021
Comments