cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A014960 Integers n such that n divides 24^n - 1.

Original entry on oeis.org

1, 23, 529, 1081, 12167, 24863, 50807, 279841, 571849, 1168561, 2387929, 2870377, 6436343, 7009273, 13152527, 15954479, 26876903, 54922367, 66018671, 112232663, 134907719, 148035889, 161213279, 302508121, 329435831
Offset: 1

Views

Author

Keywords

Comments

Also, numbers n such that n divides s(n), where s(1)=1, s(k)=s(k-1)+k*24^(k-1) (cf. A014942).
All n > 1 in the sequence are multiple of 23. - Conjectured by Thomas Baruchel, Oct 10 2003; proved by Max Alekseyev, Nov 16 2019
If n is a term and prime p|(24^n - 1), then n*p is a term. In particular, if n is a term and prime p|n, then n*p is a term. The smallest term with 3 distinct prime factors is a(16) = 15954479 = 23 * 47 * 14759. - Max Alekseyev, Nov 16 2019

Crossrefs

Prime factors are listed in A087807.
Cf. A014942.
Integers n such that n divides b^n - 1: A067945 (b=3), A014945 (b=4), A067946 (b=5), A014946 (b=6), A067947 (b=7), A014949 (b=8), A068382 (b=9), A014950 (b=10), A068383 (b=11), A014951 (b=12), A116621 (b=13), A014956 (b=14), A177805 (b=15), A014957 (b=16), A177807 (b=17), A128358 (b=18), A125000 (b=19), A128360 (b=20), A014959 (b=22).

Programs

  • Mathematica
    s = 1; Do[ If[ Mod[ s, n ] == 0, Print[n]]; s = s + (n + 1)*24^n, {n, 1, 100000}]
    Join[{1},Select[Range[330*10^6],PowerMod[24,#,#]==1&]] (* Harvey P. Dale, Jan 19 2023 *)

Extensions

More terms from Robert G. Wilson v, Sep 13 2000
a(9)-a(12) from Thomas Baruchel, Oct 10 2003
Edited and terms a(13) onward added by Max Alekseyev, Nov 16 2019

A164816 Prime factors in a divisibility sequence of the Lucas sequence v(P=3,Q=5) of the second kind.

Original entry on oeis.org

3, 17, 103, 163, 373, 487, 1733, 3469, 4373, 8803, 10259, 15607, 16069, 26237, 26297, 31193, 31517, 35153, 37987, 38047, 38149, 39367, 52817, 60427, 60589, 61553, 74357, 76837, 78713, 100733, 103979, 114377, 119891, 152189, 181277, 231131, 235891, 238307, 239783, 280927, 289243, 316903, 338581
Offset: 1

Views

Author

Jonathan Vos Post, Aug 26 2009

Keywords

Comments

This is the last sequence on p. 15 of Smyth. [WARNING: Smyth lists 2 as a possible prime factor, which, in fact, is not possible. - Max Alekseyev, Sep 17 2024]
The Lucas sequence with P = 3, Q = 5 is defined as v=2,3,-1,-18,-49,-57,.. where v(n) = P*v(n-1)-Q*v(n-2), with g.f. (2-3x)/(1-3x+5x^2).
The indices n such that n|v(n) define the sequence T = 1,3,9,27,81,153,243,459,... as listed by Smyth.
The OEIS sequence shows all distinct prime factors of elements of T.

Crossrefs

Extensions

More detailed definition, comments rephrased, non-ascii characters in URL's removed - R. J. Mathar, Sep 09 2009
a(8)-a(9), a(11), a(18) from Jean-François Alcover, Dec 08 2017
Incorrect codes (depending on a search limit) removed, prime 2 removed, terms a(10), (12)-a(17), and a(19) onward added by Max Alekseyev, Sep 17 2024

A354026 Primes that divide some k dividing 4^k + 3^k (A045584).

Original entry on oeis.org

7, 379, 14407, 689431, 4235659, 41647747, 137534083, 239900179, 242121643, 349909477, 1245283747, 1478065891, 1605314383, 2500276549, 2748751303, 5618210347, 7490947129, 11236420693, 11260421089, 16948514941, 29440659361, 74163546829, 75093609319, 82188727303
Offset: 1

Views

Author

Max Alekseyev, May 15 2022

Keywords

Comments

Prime p > 3 is in this sequence iff all prime factors of the multiplicative order of -3/4 modulo p belong to this sequence.

Crossrefs

Programs

  • PARI
    S=[]; forprime(p=5,oo, f=Set(factor(znorder(Mod(-3/4,p)))[,1]); if(#setintersect(S,f)==#f, S=setunion(S,[p]); print1(p,", ")));

Extensions

a(18)-a(24) from Jinyuan Wang, Jan 29 2025
Showing 1-3 of 3 results.