cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A214846 Square array T, read by antidiagonals: T(n,k) = 0 if n-k >= 6 or if k-n >= 6, T(k,0) = T(0,k) = 1 if 0 <= k <= 5, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 0, 6, 15, 20, 15, 6, 0, 0, 6, 21, 35, 35, 21, 6, 0, 0, 0, 27, 56, 70, 56, 27, 0, 0, 0, 0, 27, 83, 126, 126, 83, 27, 0, 0, 0, 0, 0, 110, 209, 252, 209, 110, 0, 0, 0, 0, 0, 0, 110, 319, 461, 461, 319, 110, 0, 0, 0, 0, 0, 0, 0, 429, 780, 922, 780, 429, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 16 2013

Keywords

Comments

An arithmetic hexagon of E. Lucas.

Examples

			Square array begins:
  1, 1,  1,   1,   1,   1,    0,    0,    0,     0,     0, ...
  1, 2,  3,   4,   5,   6,    6,    0,    0,     0,     0, ...
  1, 3,  6,  10,  15,  21,   27,   27,    0,     0,     0, ...
  1, 4, 10,  20,  35,  56,   83,  110,  110,     0,     0, ...
  1, 5, 15,  35,  70, 126,  209,  319,  429,   429,     0, ...
  1, 6, 21,  56, 126, 252,  461,  780, 1209,  1638,  1638, ...
  0, 6, 27,  83, 209, 461,  922, 1702, 2911,  4549,  6187, ...
  0, 0, 27, 110, 319, 780, 1702, 3404, 6315, 10864, 17051, ...
  ...
		

Crossrefs

Cf. similar sequences: A000007, A216218, A216216, A216210, A216219.

Formula

T(n,n) = A087944(n).
T(n,n+1) = T(n+1,n) = A087946(n).
T(n+2,n) = T(n,n+2) = A001353(n+1).
T(n+3,n) = T(n,n+3) = A216271(n).
T(n+5,n) = T(n+4,n) = T(n,n+4) = T(n,n+5) = A216263(n).
Sum_{k=0..n} T(n-k,k) = A216241(n).

A122068 Expansion of x*(1-3*x)*(1-x)/(1-7*x+14*x^2-7*x^3).

Original entry on oeis.org

1, 3, 10, 35, 126, 462, 1715, 6419, 24157, 91238, 345401, 1309574, 4970070, 18874261, 71705865, 272491891, 1035680954, 3936821259, 14965658694, 56893879910, 216295686467, 822315097387, 3126323230541, 11885921055638
Offset: 1

Views

Author

Gary W. Adamson, Oct 15 2006

Keywords

Crossrefs

Cf. A215007, A215008. - Roman Witula, May 16 2014

Programs

  • GAP
    a:=[1,3,10];; for n in [4..30] do a[n]:=7*(a[n-1]-2*a[n-2]+a[n-3]); od; a; # G. C. Greubel, Oct 03 2019
  • Magma
    I:=[1,3,10]; [n le 3 select I[n] else 7*(Self(n-1) -2*Self(n-2) + Self(n-3)): n in [1..30]]; // G. C. Greubel, Oct 03 2019
    
  • Maple
    seq(coeff(series(x*(1-3*x)*(1-x)/(1-7*x+14*x^2-7*x^3), x, n+1), x, n), n =1..30); # G. C. Greubel, Oct 03 2019
  • Mathematica
    M = {{2,1,0,0,0,0}, {1,2,1,0,0,0}, {0,1,2,1,0,0}, {0,0,1,2,1,0}, {0,0,0, 1,2,1}, {0,0,0,0,1,2}}; v[1] = {1,1,1,1,1,1}; v[n_]:= v[n] = M.v[n-1]; Table[v[n][[1]], {n,30}]
    Rest@CoefficientList[Series[x*(1-3*x)*(1-x)/(1-7*x+14*x^2-7*x^3), {x, 0, 30}], x] (* G. C. Greubel, Oct 03 2019 *)
    LinearRecurrence[{7,-14,7},{1,3,10},30] (* Harvey P. Dale, Mar 08 2020 *)
  • PARI
    Vec(x*(1-3*x)*(1-x)/(1-7*x+14*x^2-7*x^3)+O(x^30)) \\ Charles R Greathouse IV, Sep 27 2012
    
  • Sage
    def A122068_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(x*(1-3*x)*(1-x)/(1-7*x+14*x^2-7*x^3)).list()
    a=A122068_list(30); a[1:] # G. C. Greubel, Oct 03 2019
    

Formula

From Roman Witula, May 16 2014: (Start)
a(n) = (1/2)*Sum_{k=0..2}(1 - 1/sqrt(7)*cot(2^k * alpha))* (2*sin(2^k * alpha))^(2n), where alpha := 2*Pi/7.
a(n) = (A215007(n) + A215008(n+1) - 2*A215008(n))/2. (End)
a(n) = binomial(2*n-1, n-1) + Sum_{k=1..n} (-1)^k*binomial(2*n, n+7*k). - Greg Dresden, Jan 28 2023

A336678 Number of paths of length n starting at initial node of the path graph P_11.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 252, 461, 922, 1702, 3404, 6315, 12630, 23494, 46988, 87533, 175066, 326382, 652764, 1217483, 2434966, 4542526, 9085052, 16950573, 33901146, 63255670, 126511340, 236063915, 472127830, 880983606, 1761967212, 3287837741
Offset: 0

Views

Author

Nachum Dershowitz, Jul 30 2020

Keywords

Comments

Also the number of paths along a corridor width 11, starting from one side.
In general, a(n,m) = (2^n/(m+1))*Sum_{r=1..m} (1-(-1)^r)*cos(Pi*r/(m+1))^n*(1+cos(Pi*r/(m+1))) gives the number of paths of length n starting at the initial node on the path graph P_m. Here we have m=11. - Herbert Kociemba, Sep 14 2020

Crossrefs

This is row 11 of A094718. Bisections give A087944 (even part), A087946 (odd part).
Cf. A000004 (row 0), A000007 (row 1), A000012 (row 2), A016116 (row 3), A000045 (row 4), A038754 (row 5), A028495 (row 6), A030436 (row 7), A061551 (row 8),
A178381 (row 9), A336675 (row 10), this sequence (row 11), A001405 (limit).

Programs

  • Maple
    X := j -> (-1)^(j/12) - (-1)^(1-j/12):
    a := k -> add((2 + X(j))*X(j)^k, j in [1, 3, 5, 7, 9, 11])/12:
    seq(simplify(a(n)), n=0..30); # Peter Luschny, Sep 17 2020
  • Mathematica
    LinearRecurrence[{0, 6, 0, -9, 0, 2}, {1, 1, 2, 3, 6, 10}, 40] (* Harvey P. Dale, Sep 08 2020 *)
    a[n_,m_]:=2^(n+1)/(m+1) Module[{x=(Pi r)/(m+1)},Sum[Cos[x]^n (1+Cos[x]),{r,1,m,2}]]
    Table[a[n,11], {n,0,40}]//Round (* Herbert Kociemba, Sep 14 2020 *)
  • PARI
    my(x='x+O('x^44)); Vec(-(x^5+3*x^4-3*x^3-4*x^2+x+1)/((2*x^2-1)*(x^4-4*x^2+1))) \\ Joerg Arndt, Jul 31 2020

Formula

G.f.: -(x^5+3*x^4-3*x^3-4*x^2+x+1)/((2*x^2-1)*(x^4-4*x^2+1)).
a(n) = (2^n/12)*Sum_{r=1..11} (1-(-1)^r)*cos(Pi*r/12)^n*(1+cos(Pi*r/12)). - Herbert Kociemba, Sep 14 2020

A216271 Expansion of (1-x)/((1-2x)(1-4x+x^2)).

Original entry on oeis.org

1, 5, 21, 83, 319, 1209, 4549, 17051, 63783, 238337, 890077, 3322995, 12403951, 46296905, 172791861, 644886923, 2406788599, 8982333009, 33522674509, 125108627171, 466912358463, 1742541855257, 6503257159717, 24270490977915, 90578715140551, 338044386361505, 1261598863859901
Offset: 0

Views

Author

Philippe Deléham, Mar 16 2013

Keywords

Comments

Partial sums are in A216263.
Diagonal of square array A214846.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-x)/((1-2x)(1-4x+x^2)),{x,0,30}],x] (* Harvey P. Dale, Oct 05 2019 *)

Formula

a(n) = A001353(n+2) - A087946(n+1).
G.f.: (1-x)/(1-6x+9x^2-2x^3).
a(n) = 6*a(n-1) - 9*a(n-2) + 2*a(n-3), a(0) = 1, a(1) = 5, a(2) = 21.
Sum_{k=0..n} a(k) = A216263(n).
Showing 1-4 of 4 results.