A214846
Square array T, read by antidiagonals: T(n,k) = 0 if n-k >= 6 or if k-n >= 6, T(k,0) = T(0,k) = 1 if 0 <= k <= 5, T(n,k) = T(n-1,k) + T(n,k-1).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 0, 6, 15, 20, 15, 6, 0, 0, 6, 21, 35, 35, 21, 6, 0, 0, 0, 27, 56, 70, 56, 27, 0, 0, 0, 0, 27, 83, 126, 126, 83, 27, 0, 0, 0, 0, 0, 110, 209, 252, 209, 110, 0, 0, 0, 0, 0, 0, 110, 319, 461, 461, 319, 110, 0, 0, 0, 0, 0, 0, 0, 429, 780, 922, 780, 429, 0, 0, 0, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, ...
1, 2, 3, 4, 5, 6, 6, 0, 0, 0, 0, ...
1, 3, 6, 10, 15, 21, 27, 27, 0, 0, 0, ...
1, 4, 10, 20, 35, 56, 83, 110, 110, 0, 0, ...
1, 5, 15, 35, 70, 126, 209, 319, 429, 429, 0, ...
1, 6, 21, 56, 126, 252, 461, 780, 1209, 1638, 1638, ...
0, 6, 27, 83, 209, 461, 922, 1702, 2911, 4549, 6187, ...
0, 0, 27, 110, 319, 780, 1702, 3404, 6315, 10864, 17051, ...
...
A122068
Expansion of x*(1-3*x)*(1-x)/(1-7*x+14*x^2-7*x^3).
Original entry on oeis.org
1, 3, 10, 35, 126, 462, 1715, 6419, 24157, 91238, 345401, 1309574, 4970070, 18874261, 71705865, 272491891, 1035680954, 3936821259, 14965658694, 56893879910, 216295686467, 822315097387, 3126323230541, 11885921055638
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Peter Steinbach, Golden fields: a case for the heptagon, Math. Mag. Vol. 70, No. 1, Feb. 1997, 22-31.
- R. Witula, P. Lorenc, M. Rozanski, and M. Szweda, Sums of the rational powers of roots of cubic polynomials, Zeszyty Naukowe Politechniki Slaskiej, Seria: Matematyka Stosowana z. 4, Nr. kol. 1920, 2014.
- Index entries for linear recurrences with constant coefficients, signature (7,-14,7).
-
a:=[1,3,10];; for n in [4..30] do a[n]:=7*(a[n-1]-2*a[n-2]+a[n-3]); od; a; # G. C. Greubel, Oct 03 2019
-
I:=[1,3,10]; [n le 3 select I[n] else 7*(Self(n-1) -2*Self(n-2) + Self(n-3)): n in [1..30]]; // G. C. Greubel, Oct 03 2019
-
seq(coeff(series(x*(1-3*x)*(1-x)/(1-7*x+14*x^2-7*x^3), x, n+1), x, n), n =1..30); # G. C. Greubel, Oct 03 2019
-
M = {{2,1,0,0,0,0}, {1,2,1,0,0,0}, {0,1,2,1,0,0}, {0,0,1,2,1,0}, {0,0,0, 1,2,1}, {0,0,0,0,1,2}}; v[1] = {1,1,1,1,1,1}; v[n_]:= v[n] = M.v[n-1]; Table[v[n][[1]], {n,30}]
Rest@CoefficientList[Series[x*(1-3*x)*(1-x)/(1-7*x+14*x^2-7*x^3), {x, 0, 30}], x] (* G. C. Greubel, Oct 03 2019 *)
LinearRecurrence[{7,-14,7},{1,3,10},30] (* Harvey P. Dale, Mar 08 2020 *)
-
Vec(x*(1-3*x)*(1-x)/(1-7*x+14*x^2-7*x^3)+O(x^30)) \\ Charles R Greathouse IV, Sep 27 2012
-
def A122068_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P(x*(1-3*x)*(1-x)/(1-7*x+14*x^2-7*x^3)).list()
a=A122068_list(30); a[1:] # G. C. Greubel, Oct 03 2019
A336678
Number of paths of length n starting at initial node of the path graph P_11.
Original entry on oeis.org
1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 252, 461, 922, 1702, 3404, 6315, 12630, 23494, 46988, 87533, 175066, 326382, 652764, 1217483, 2434966, 4542526, 9085052, 16950573, 33901146, 63255670, 126511340, 236063915, 472127830, 880983606, 1761967212, 3287837741
Offset: 0
- Johann Cigler, Some remarks and conjectures related to lattice paths in strips along the x-axis, arXiv:1501.04750 [math.CO], 2015-2016.
- Nachum Dershowitz, Between Broadway and the Hudson: A Bijection of Corridor Paths, arXiv:2006.06516 [math.CO], 2020.
- Index entries for linear recurrences with constant coefficients, signature (0,6,0,-9,0,2).
-
X := j -> (-1)^(j/12) - (-1)^(1-j/12):
a := k -> add((2 + X(j))*X(j)^k, j in [1, 3, 5, 7, 9, 11])/12:
seq(simplify(a(n)), n=0..30); # Peter Luschny, Sep 17 2020
-
LinearRecurrence[{0, 6, 0, -9, 0, 2}, {1, 1, 2, 3, 6, 10}, 40] (* Harvey P. Dale, Sep 08 2020 *)
a[n_,m_]:=2^(n+1)/(m+1) Module[{x=(Pi r)/(m+1)},Sum[Cos[x]^n (1+Cos[x]),{r,1,m,2}]]
Table[a[n,11], {n,0,40}]//Round (* Herbert Kociemba, Sep 14 2020 *)
-
my(x='x+O('x^44)); Vec(-(x^5+3*x^4-3*x^3-4*x^2+x+1)/((2*x^2-1)*(x^4-4*x^2+1))) \\ Joerg Arndt, Jul 31 2020
A216271
Expansion of (1-x)/((1-2x)(1-4x+x^2)).
Original entry on oeis.org
1, 5, 21, 83, 319, 1209, 4549, 17051, 63783, 238337, 890077, 3322995, 12403951, 46296905, 172791861, 644886923, 2406788599, 8982333009, 33522674509, 125108627171, 466912358463, 1742541855257, 6503257159717, 24270490977915, 90578715140551, 338044386361505, 1261598863859901
Offset: 0
-
CoefficientList[Series[(1-x)/((1-2x)(1-4x+x^2)),{x,0,30}],x] (* Harvey P. Dale, Oct 05 2019 *)
Showing 1-4 of 4 results.
Comments