cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A208437 Triangular array read by rows: T(n,k) is the number of set partitions of {1,2,...,n} that have exactly k distinct block sizes.

Original entry on oeis.org

1, 2, 2, 3, 5, 10, 2, 50, 27, 116, 60, 2, 560, 315, 142, 1730, 2268, 282, 6123, 14742, 1073, 30122, 72180, 12600, 2, 116908, 464640, 97020, 32034, 507277, 2676366, 997920, 2, 2492737, 16400098, 8751600, 136853, 15328119, 94209206, 81225144, 1527528, 56182092, 673282610, 614128515, 37837800
Offset: 1

Views

Author

Geoffrey Critzer, Feb 26 2012

Keywords

Comments

Column 1 = A038041.
Column 2 = A088142.
Column 3 = A133118.
Row sums = A000110 (Bell numbers).
Row n has floor([sqrt(1+8n)-1]/2) terms (number of terms increases by one at each triangular number). - Franklin T. Adams-Watters, Feb 26 2012

Examples

			:    1;
:    2;
:    2,      3;
:    5,     10;
:    2,     50;
:   27,    116,     60;
:    2,    560,    315;
:  142,   1730,   2268;
:  282,   6123,  14742;
: 1073,  30122,  72180,   12600;
		

Crossrefs

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
          `if`(i<1, 0, add(multinomial(n, n-i*j, i$j)/j!*
          b(n-i*j, i-1)*`if`(j=0, 1, x), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n$2)):
    seq(T(n), n=1..16);  # Alois P. Heinz, Aug 21 2014
  • Mathematica
    nn = 15; p = Product[1 + y (Exp[x^i/i!] - 1), {i, 1, nn}];f[list_] := Select[list, # > 0 &];
    Map[f, Drop[ Range[0, nn]! CoefficientList[Series[p, {x, 0, nn}], {x, y}], 1]] // Flatten

Formula

E.g.f.: Product_{i>=1} 1 + y *(exp(x^i/i!)-1).
T(n*(n+1)/2,n) = A022915(n). - Alois P. Heinz, Apr 08 2016

A131661 Number of compositions of n such that the cardinality of the set of parts is 2.

Original entry on oeis.org

0, 0, 2, 5, 14, 22, 44, 68, 107, 172, 261, 396, 606, 950, 1414, 2238, 3418, 5411, 8368, 13297, 20840, 33268, 52549, 84120, 133775, 214611, 343025, 551064, 883600, 1421767, 2284870, 3680296, 5924725, 9551161, 15393855, 24834827, 40061700
Offset: 1

Views

Author

Vladeta Jovovic, Sep 13 2007

Keywords

Crossrefs

Column k=2 of A235998.
Cf. A242900 (with distinct multiplicities).

Programs

  • Maple
    with(numtheory):
    a:= n-> add(add(add(binomial(j+(n-i*j)/d, j), d=select(x->xAlois P. Heinz, Feb 01 2014
  • Mathematica
    Rest@ CoefficientList[ Series[ Sum[ x^(i + j)*(x^i + x^j - 2)/((x^i - 1)*(x^j - 1)*(x^i + x^j - 1)), {i, 2, 37}, {j, i - 1}], {x, 0, 37}], x] (* Robert G. Wilson v, Sep 16 2007 *)

Formula

G.f.: Sum(Sum(x^(i+j)*(x^i+x^j-2)/((x^i-1)*(x^j-1)*(x^i+x^j-1)), j=1..i-1), i=2..infinity).
a(n) ~ 1/sqrt(5) * ((1+sqrt(5))/2)^(n+1). - Vaclav Kotesovec, May 01 2014

Extensions

More terms from Robert G. Wilson v, Sep 16 2007

A133118 Number of partitions of n-set with 3 block sizes.

Original entry on oeis.org

60, 315, 2268, 14742, 72180, 464640, 2676366, 16400098, 94209206, 673282610, 4095231104, 29371828846, 197547348216, 1513916607683, 10904464442572, 87070803499372, 673555061736062, 5718121102062336, 47028289679340734, 418812093667530755, 3680961843042545490, 34161428275433710485
Offset: 6

Views

Author

Vladeta Jovovic, Sep 18 2007

Keywords

Crossrefs

Column k=3 of A208437.

Programs

  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!);
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Prepend[Table[i, {j}], n - i*j]]/j!*b[n - i*j, i - 1]*If[j == 0, 1, x], {j, 0, n/i}]]];
    a[n_] := Coefficient[b[n, n], x, 3];
    Array[a, 22, 6] (* Jean-François Alcover, May 24 2019, after Alois P. Heinz in A208437 *)

Formula

We obtain e.g.f. for number of partitions of n-set with m block sizes if we substitute x(i) with -Sum_{k>0} (1-exp(x^k/k!))^i in cycle index Z(S(m); x(1),x(2),...,x(n)) of symmetric group S(m) of degree m.

Extensions

More terms from Max Alekseyev, Jun 17 2011

A133119 Number of permutations of [n] with 3 cycle lengths.

Original entry on oeis.org

120, 1050, 12712, 141876, 1418400, 17061660, 212254548, 2735287698, 37354035628, 581350330470, 8895742806480, 151305163230480, 2659183039338192, 50112909523522476, 976443721325014300, 20413628375979803370, 434137453618439716068
Offset: 6

Views

Author

Vladeta Jovovic, Sep 18 2007

Keywords

Crossrefs

Column k=3 of A218868.

Formula

We obtain e.g.f. for number of permutations of [n] with m cycle lengths if we substitute x(i) with -Sum_{k>0} ((1-exp(x^k/k))^i in cycle index Z(S(m); x(1),x(2),..,x(m)) of symmetric group S(m) of degree m.

Extensions

More terms from Max Alekseyev, Feb 08 2010
Showing 1-4 of 4 results.