cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088179 Primes p such that mu(p-1) = 1; that is, p-1 is squarefree and has an even number of prime factors, where mu is the Moebius function.

Original entry on oeis.org

2, 7, 11, 23, 47, 59, 83, 107, 167, 179, 211, 227, 263, 331, 347, 359, 383, 463, 467, 479, 503, 547, 563, 571, 587, 691, 719, 839, 859, 863, 887, 911, 967, 983, 1019, 1123, 1187, 1231, 1283, 1291, 1303, 1307, 1319, 1327, 1367, 1439, 1483, 1487, 1523, 1619, 1723
Offset: 1

Views

Author

N. J. A. Sloane and T. D. Noe, Nov 03 2003

Keywords

Comments

It is an unsolved problem to determine if this sequence has a positive density in the primes. - Pieter Moree (moree(AT)mpim-bonn.mpg.de), Nov 03 2003
Except for the initial element 2, this sequence seems to be exactly those primes the sum of whose nonquadratic, nonprimitive-root residues is congruent to -1(mod p). - Dimitri Papadopoulos, Jan 10 2016

Crossrefs

Cf. A049092 (primes p with mu(p-1)=0), A078330 (primes p with mu(p-1)=-1), A089451 (mu(p-1) for prime p).
Cf. A002496.

Programs

  • Magma
    [n: n in [2..2000] | IsPrime(n) and MoebiusMu(n-1) eq 1]; // Vincenzo Librandi, Jan 10 2016
  • Maple
    filter:= proc(p) isprime(p) and numtheory:-mobius(p-1) = 1 end proc:
    select(filter, [2,seq(i,i=3..2000,2)]); # Robert Israel, Feb 03 2016
  • Mathematica
    Select[Prime[Range[400]], MoebiusMu[ #-1]==1&]
  • PARI
    lista(nn) = forprime(p=2, nn, if (moebius(p-1) == 1, print1(p, ", "))); \\ Michel Marcus, Jan 10 2016
    
  • PARI
    list(lim)=my(v=List(),last); forsquarefree(k=1,lim\1, if(moebius(k)==1, last=k[1], if(k[2][,2]==[1]~ && k[1]-last==1, listput(v,k[1])))); Vec(v) \\ Charles R Greathouse IV, Jan 08 2018