A088179 Primes p such that mu(p-1) = 1; that is, p-1 is squarefree and has an even number of prime factors, where mu is the Moebius function.
2, 7, 11, 23, 47, 59, 83, 107, 167, 179, 211, 227, 263, 331, 347, 359, 383, 463, 467, 479, 503, 547, 563, 571, 587, 691, 719, 839, 859, 863, 887, 911, 967, 983, 1019, 1123, 1187, 1231, 1283, 1291, 1303, 1307, 1319, 1327, 1367, 1439, 1483, 1487, 1523, 1619, 1723
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Moebius Function
Crossrefs
Programs
-
Magma
[n: n in [2..2000] | IsPrime(n) and MoebiusMu(n-1) eq 1]; // Vincenzo Librandi, Jan 10 2016
-
Maple
filter:= proc(p) isprime(p) and numtheory:-mobius(p-1) = 1 end proc: select(filter, [2,seq(i,i=3..2000,2)]); # Robert Israel, Feb 03 2016
-
Mathematica
Select[Prime[Range[400]], MoebiusMu[ #-1]==1&]
-
PARI
lista(nn) = forprime(p=2, nn, if (moebius(p-1) == 1, print1(p, ", "))); \\ Michel Marcus, Jan 10 2016
-
PARI
list(lim)=my(v=List(),last); forsquarefree(k=1,lim\1, if(moebius(k)==1, last=k[1], if(k[2][,2]==[1]~ && k[1]-last==1, listput(v,k[1])))); Vec(v) \\ Charles R Greathouse IV, Jan 08 2018
Comments