cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088209 Numerators of convergents of the continued fraction with the n+1 partial quotients: [1;1,1,...(n 1's)...,1,n+1], starting with [1], [1;2], [1;1,3], [1;1,1,4], ...

Original entry on oeis.org

1, 3, 7, 14, 28, 53, 99, 181, 327, 584, 1034, 1817, 3173, 5511, 9527, 16402, 28136, 48109, 82023, 139481, 236631, 400588, 676822, 1141489, 1921993, 3231243, 5424679, 9095126, 15230452, 25475429, 42566379, 71052157, 118489383
Offset: 0

Views

Author

Paul D. Hanna, Sep 23 2003

Keywords

Comments

Denominators form the Les Marvin sequence: A007502(n+1).

Examples

			a(3)/A007502(4) = [1;1,1,4] = 14/9.
		

Crossrefs

a(n) = A109754(n, n+2) = A101220(n, 0, n+2).
Cf. A007502 (the denominators), A000045, A045925.

Programs

  • Haskell
    a088209 n = a088209_list !! n
    a088209_list = zipWith (+) a000045_list $ tail a045925_list
    -- Reinhard Zumkeller, Oct 01 2012, Mar 04 2012
    
  • Julia
    # The function 'fibrec' is defined in A354044.
    function A088209(n)
        n == 0 && return BigInt(1)
        a, b = fibrec(n)
        a + (n + 1)*b
    end
    println([A088209(n) for n in 0:32]) # Peter Luschny, May 18 2022
  • Mathematica
    f[n_] := Numerator@  FromContinuedFraction@ Join[ Table[1, {n}], {n + 1}]; Array[f, 30, 0] (* Robert G. Wilson v, Mar 04 2012 *)
    CoefficientList[Series[(1+x-x^3)/(-1+x+x^2)^2,{x,0,40}],x] (* or *) LinearRecurrence[{2,1,-2,-1},{1,3,7,14},40] (* Harvey P. Dale, Jul 13 2021 *)

Formula

G.f.: (1+x-x^3)/(1-x-x^2)^2. [Corrected by Georg Fischer, Aug 16 2021]
a(n) = Fibonacci(n) + (n+1)*Fibonacci(n+1). - Paul Barry, Apr 20 2004
a(n) = a(n-1) + a(n-2) + Lucas(n). - Yuchun Ji, Apr 23 2023