A088209 Numerators of convergents of the continued fraction with the n+1 partial quotients: [1;1,1,...(n 1's)...,1,n+1], starting with [1], [1;2], [1;1,3], [1;1,1,4], ...
1, 3, 7, 14, 28, 53, 99, 181, 327, 584, 1034, 1817, 3173, 5511, 9527, 16402, 28136, 48109, 82023, 139481, 236631, 400588, 676822, 1141489, 1921993, 3231243, 5424679, 9095126, 15230452, 25475429, 42566379, 71052157, 118489383
Offset: 0
Examples
a(3)/A007502(4) = [1;1,1,4] = 14/9.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,1,-2,-1).
Crossrefs
Programs
-
Haskell
a088209 n = a088209_list !! n a088209_list = zipWith (+) a000045_list $ tail a045925_list -- Reinhard Zumkeller, Oct 01 2012, Mar 04 2012
-
Julia
# The function 'fibrec' is defined in A354044. function A088209(n) n == 0 && return BigInt(1) a, b = fibrec(n) a + (n + 1)*b end println([A088209(n) for n in 0:32]) # Peter Luschny, May 18 2022
-
Mathematica
f[n_] := Numerator@ FromContinuedFraction@ Join[ Table[1, {n}], {n + 1}]; Array[f, 30, 0] (* Robert G. Wilson v, Mar 04 2012 *) CoefficientList[Series[(1+x-x^3)/(-1+x+x^2)^2,{x,0,40}],x] (* or *) LinearRecurrence[{2,1,-2,-1},{1,3,7,14},40] (* Harvey P. Dale, Jul 13 2021 *)
Formula
G.f.: (1+x-x^3)/(1-x-x^2)^2. [Corrected by Georg Fischer, Aug 16 2021]
a(n) = Fibonacci(n) + (n+1)*Fibonacci(n+1). - Paul Barry, Apr 20 2004
a(n) = a(n-1) + a(n-2) + Lucas(n). - Yuchun Ji, Apr 23 2023
Comments