A088232 Numbers k such that 3 does not divide phi(k).
1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 15, 16, 17, 20, 22, 23, 24, 25, 29, 30, 32, 33, 34, 40, 41, 44, 46, 47, 48, 50, 51, 53, 55, 58, 59, 60, 64, 66, 68, 69, 71, 75, 80, 82, 83, 85, 87, 88, 89, 92, 94, 96, 100, 101, 102, 106, 107, 110, 113, 115, 116, 118, 120, 121, 123, 125, 128
Offset: 1
Keywords
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Robert E. Dressler, A property of the phi and sigma_j functions, Compositio Mathematica, Vol. 31, No. 2 (1975), pp. 115-118.
- Kevin Ford, Florian Luca, and Pieter Moree, Values of the Euler phi-function not divisible by a given odd prime, and the distribution of Euler-Kronecker constants for cyclotomic fields, arXiv:1108.3805 [math.NT], 2011-2012.
Crossrefs
Programs
-
Maple
select(t -> numtheory:-phi(t) mod 3 <> 0, [$1..1000]); # Robert Israel, Sep 04 2015
-
Mathematica
Prepend[Position[Table[Union[Select[Range[n], CoprimeQ[#, n] &]] == Union[Mod[Select[Range[n], CoprimeQ[#, n] &]^3, n]], {n, 1,155}], True], 1] // Flatten (* Geoffrey Critzer, Jun 07 2015 *) Select[Range[140],!Divisible[EulerPhi[#],3]&] (* Harvey P. Dale, Sep 23 2017 *)
-
PARI
is(n)=eulerphi(n)%3 \\ Charles R Greathouse IV, Feb 04 2013
Formula
a(n) ~ k n sqrt(log(n)) for some constant k. k appears to be around 1.08. [Charles R Greathouse IV, Feb 14 2012]
Extensions
More terms from Ray Chandler, Nov 05 2003
Comments