cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A329963 Numbers k such that sigma(k) is not divisible by 3.

Original entry on oeis.org

1, 3, 4, 7, 9, 12, 13, 16, 19, 21, 25, 27, 28, 31, 36, 37, 39, 43, 48, 52, 57, 61, 63, 64, 67, 73, 75, 76, 79, 81, 84, 91, 93, 97, 100, 103, 108, 109, 111, 112, 117, 121, 124, 127, 129, 133, 139, 144, 148, 151, 156, 157, 163, 171, 172, 175, 181, 183, 189, 192, 193, 199, 201, 208, 211, 217, 219, 223, 225, 228, 229
Offset: 1

Views

Author

John L. Drost, Nov 25 2019

Keywords

Comments

A number k is in the sequence iff in its prime factorization, all primes p == 1 (mod 3) occur to such a power p^e that e != 2 (mod 3), and all primes == 2 (mod 3) occur to even powers. (3 can occur to any power.) This sequence is similar but not identical to many others; in particular, 343 is in this sequence, but not in A034022. (And here we don't have 196, although it is in A034022). - First sentence corrected and additional notes added by Antti Karttunen, Jul 03 2024, see also Robert Israel's Nov 09 2016 comment in A087943.
The asymptotic density of this sequence is 0 (Dressler, 1975). - Amiram Eldar, Jul 23 2020

Crossrefs

Complement of A087943. Positions of zeros in A354100, nonzeros in A074941.
Cf. A000203, A353815 (characteristic function).
Setwise difference A003136 \ A088535.
Subsequences: A002476, A068228, A351537, A374135.
Cf. also A088232.
Not the same as A034022.

Programs

Extensions

More terms from Joshua Oliver, Nov 26 2019
Data section further extended up to a(71), to better differentiate from nearby sequences - Antti Karttunen, Jul 04 2024

A066498 Numbers k such that 3 divides phi(k).

Original entry on oeis.org

7, 9, 13, 14, 18, 19, 21, 26, 27, 28, 31, 35, 36, 37, 38, 39, 42, 43, 45, 49, 52, 54, 56, 57, 61, 62, 63, 65, 67, 70, 72, 73, 74, 76, 77, 78, 79, 81, 84, 86, 90, 91, 93, 95, 97, 98, 99, 103, 104, 105, 108, 109, 111, 112, 114, 117, 119, 122, 124, 126, 127, 129, 130, 133
Offset: 1

Views

Author

Benoit Cloitre, Jan 04 2002

Keywords

Comments

Numbers k such that x^3 == 1 (mod k) has solutions 1 < x < k.
Terms are multiple of 9 or of a prime of the form 6k+1.
If k is a term of this sequence, then G = is a non-abelian group of order 3k, where 1 < r < n and r^3 == 1 (mod k). For example, G can be the subgroup of GL(2, Z_k) generated by x = {{1, 1}, {0, 1}} and y = {{r, 0}, {0, 1}}. - Jianing Song, Sep 17 2019
The asymptotic density of this sequence is 1 (Dressler, 1975). - Amiram Eldar, Mar 21 2021

Examples

			If n < 7 then x^3 = 1 (mod n) has no solution 1 < x < n, but {2,4} are solutions to x^3 == 1 (mod 7), hence a(1) = 7.
		

Crossrefs

Complement of A088232.
A007645 gives the primes congruent to 1 mod 3.
Column k=2 of A277915.

Programs

  • Mathematica
    Select[Range[150], Divisible[EulerPhi[#], 3]&] (* Harvey P. Dale, Jan 12 2011 *)
  • PARI
    isok(k)={ eulerphi(k)%3 == 0 } \\ Harry J. Smith, Feb 18 2010

Extensions

Simpler definition from Yuval Dekel (dekelyuval(AT)hotmail.com), Oct 25 2003
Corrected and extended by Ray Chandler, Nov 05 2003

A319100 Number of solutions to x^6 == 1 (mod n).

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 6, 4, 6, 2, 2, 4, 6, 6, 4, 4, 2, 6, 6, 4, 12, 2, 2, 8, 2, 6, 6, 12, 2, 4, 6, 4, 4, 2, 12, 12, 6, 6, 12, 8, 2, 12, 6, 4, 12, 2, 2, 8, 6, 2, 4, 12, 2, 6, 4, 24, 12, 2, 2, 8, 6, 6, 36, 4, 12, 4, 6, 4, 4, 12, 2, 24, 6, 6, 4, 12, 12, 12, 6, 8, 6, 2
Offset: 1

Views

Author

Jianing Song, Sep 10 2018

Keywords

Comments

All terms are 3-smooth. a(n) is even for n > 2. Those n such that a(n) = 2 are in A066501.

Examples

			Solutions to x^6 == 1 (mod 13): x == 1, 3, 4, 9, 10, 12 (mod 13).
Solutions to x^6 == 1 (mod 27): x == 1, 8, 10, 17, 19, 26 (mod 27) (x == 1, 8 (mod 9)).
Solutions to x^6 == 1 (mod 37): x == 1, 10, 11, 26, 27, 36 (mod 37).
		

Crossrefs

Number of solutions to x^k == 1 (mod n): A060594 (k=2), A060839 (k=3), A073103 (k=4), A319099 (k=5), this sequence (k=6), A319101 (k=7), A247257 (k=8).
Mobius transform gives A307381.

Programs

  • PARI
    a(n)=my(Z=znstar(n)[2]); prod(i=1, #Z, gcd(6, Z[i]))

Formula

Multiplicative with a(2) = 1, a(4) = 2, a(2^e) = 4 for e >= 3; a(3) = 2, a(3^e) = 6 if e >= 2; for other primes p, a(p^e) = 6 if p == 1 (mod 6), a(p^e) = 2 if p == 5 (mod 6).
If the multiplicative group of integers modulo n is isomorphic to C_{k_1} x C_{k_2} x ... x C_{k_m}, where k_i divides k_j for i < j; then a(n) = Product_{i=1..m} gcd(6, k_i).
a(n) = A060594(n)*A060839(n).
For n > 2, a(n) = A060839(n)*2^A046072(n).
a(n) = A060594(n) iff n is not divisible by 9 and no prime factor of n is congruent to 1 mod 6, that is, n in A088232.
a(n) = A000010(n)/A293483(n). - Jianing Song, Nov 10 2019
Sum_{k=1..n} a(k) ~ c * n * log(n)^3, where c = (1/Pi^4) * Product_{p prime == 1 (mod 6)} (1 - (12*p-4)/(p+1)^3) = 0.0075925601... (Finch et al., 2010). - Amiram Eldar, Mar 26 2021

A354099 The 3-adic valuation of Euler totient function phi.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 2, 0, 1, 0, 0, 0, 0, 1, 2, 1, 0, 0, 1, 0, 0, 0, 1, 1, 2, 2, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 2, 0, 1, 2, 0, 0, 0, 1, 1, 2, 0, 1, 0, 1, 0, 0, 1, 0, 1, 2, 2, 0, 2, 1, 1, 1, 0, 3, 0, 0, 1, 0, 1, 0, 0, 0, 1, 2, 0, 1, 0, 2, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, May 17 2022

Keywords

Crossrefs

Cf. A088232 (positions of zeros), A066498 (of terms > 0).
Cf. also A354100.

Programs

  • Mathematica
    a[n_] := IntegerExponent[EulerPhi[n], 3]; Array[a, 100] (* Amiram Eldar, May 17 2022 *)
  • PARI
    A354099(n) = valuation(eulerphi(n),3);
    
  • PARI
    A354099(n) = { my(f=factor(n)); sum(k=1,#f~,valuation((f[k,1]-1)*(f[k,1]^(f[k,2]-1)), 3)); }; \\ Demonstrates the additivity.

Formula

a(n) = A007949(A000010(n)).
Additive with a(p^e) = A007949((p-1)*p^(e-1)).

A254073 Number of solutions to x^3 + y^3 + z^3 == 1 (mod n) for 1 <= x, y, z <= n.

Original entry on oeis.org

1, 4, 9, 16, 25, 36, 90, 64, 162, 100, 121, 144, 252, 360, 225, 256, 289, 648, 468, 400, 810, 484, 529, 576, 625, 1008, 1458, 1440, 841, 900, 1143, 1024, 1089, 1156, 2250, 2592, 1602, 1872, 2268, 1600, 1681, 3240, 2115, 1936, 4050, 2116, 2209, 2304, 4410
Offset: 1

Views

Author

Keywords

Comments

It appears that a(n) = n^2 for n in A088232 (numbers n such that 3 does not divide phi(n)) and that a(n) != n^2 for n in A066498 (numbers n such that 3 divides phi(n)). - Michel Marcus, Mar 13 2015
It appears that a(p) != p^2 for primes in A002476 (primes of form 6m + 1). - Michel Marcus, Mar 13 2015

Crossrefs

Cf. A087412.

Programs

  • Mathematica
    a[n_] := Sum[ If[ Mod[x^3 + y^3 + z^3, n] == 1, 1, 0], {x, n}, {y, n}, {z, n}]; a[1]=1; Table[a[n], {n, 2,22}]
  • PARI
    a(n) = {nb = 0; for (x=1, n, for (y=1, n, for (z=1, n, if ((Mod(x^3,n) + Mod(y^3,n) + Mod(z^3,n)) % n == Mod(1, n), nb ++);););); nb;} \\ Michel Marcus, Mar 11 2015
    
  • PARI
    a(n)={my(p=Mod(sum(i=0, n-1, x^(i^3%n)), 1-x^n)^3); polcoeff(lift(p), 1%n)} \\ Andrew Howroyd, Jul 18 2018
    
  • Python
    def A254073(n):
        ndict = {}
        for i in range(n):
            m = pow(i,3,n)
            if m in ndict:
                ndict[m] += 1
            else:
                ndict[m] = 1
        count = 0
        for i in ndict:
            ni = ndict[i]
            for j in ndict:
                k = (1-i-j) % n
                if k in ndict:
                    count += ni*ndict[j]*ndict[k]
        return count # Chai Wah Wu, Jun 06 2017

A276919 Number of solutions to x^3 + y^3 + z^3 + t^3 == 1 (mod n) for 1 <= x, y, z, t <= n.

Original entry on oeis.org

1, 8, 27, 64, 125, 216, 336, 512, 1296, 1000, 1331, 1728, 1794, 2688, 3375, 4096, 4913, 10368, 7410, 8000, 9072, 10648, 12167, 13824, 15625, 14352, 34992, 21504, 24389, 27000, 30225, 32768, 35937, 39304, 42000, 82944, 48396, 59280, 48438, 64000, 68921, 72576, 77529, 85184, 162000, 97336
Offset: 1

Views

Author

Keywords

Comments

It appears that a(n) = n^3 for n in A088232. See also A066498. - Michel Marcus, Oct 11 2016

Crossrefs

Programs

  • Mathematica
    JJJ[4, n, lam] = Sum[If[Mod[a^3 + b^3 + c^3 + d^3, n] == Mod[lam, n], 1, 0], {d, 0, n - 1}, {a, 0, n - 1}, {b, 0, n - 1}, {c, 0 , n - 1}]; Table[JJJ[4, n, 1], {n, 1, 50}]
  • PARI
    a(n) = sum(x=1, n, sum(y=1, n, sum(z=1, n, sum(t=1, n, Mod(x,n)^3 + Mod(y,n)^3 + Mod(z,n)^3 + Mod(t,n)^3 == 1)))); \\ Michel Marcus, Oct 11 2016
    
  • PARI
    qperms(v) = {my(r=1,t); v = vecsort(v); for(i=1,#v-1, if(v[i]==v[i+1], t++, r*=binomial(i,t+1);t=0));r*=binomial(#v,t+1)}
    a(n) = {my(t=0); forvec(v=vector(4,i,[1,n]), if(sum(i=1, 4, Mod(v[i], n)^3)==1, print1(v", "); t+=qperms(v)),1);t} \\ David A. Corneth, Oct 11 2016
    
  • Python
    def A276919(n):
        ndict = {}
        for i in range(n):
            i3 = pow(i,3,n)
            for j in range(i+1):
                j3 = pow(j,3,n)
                m = (i3+j3) % n
                if m in ndict:
                    if i == j:
                        ndict[m] += 1
                    else:
                        ndict[m] += 2
                else:
                    if i == j:
                        ndict[m] = 1
                    else:
                        ndict[m] = 2
        count = 0
        for i in ndict:
            j = (1-i) % n
            if j in ndict:
                count += ndict[i]*ndict[j]
        return count # Chai Wah Wu, Jun 06 2017

A132385 Number of distinct primes among the cubes mod n.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 0, 3, 0, 4, 4, 4, 1, 2, 6, 5, 6, 1, 2, 7, 2, 8, 8, 8, 8, 2, 2, 2, 9, 10, 3, 10, 11, 11, 3, 2, 4, 5, 3, 11, 12, 4, 3, 13, 3, 14, 14, 14, 4, 14, 15, 4, 15, 4, 16, 5, 5, 16, 16, 16, 6, 6, 0, 17, 5, 18, 5, 18, 19, 5
Offset: 1

Views

Author

Jonathan Vos Post, Nov 07 2007

Keywords

Comments

This is to cubes A000578 as A132213 is to squares A000290.
It seems that the size of a(n) as compared to its surrounding elements is dependent on whether or not n is in A088232. If n is in A088232 the sequence assumes "big" values, otherwise the values will be "small". - Stefan Steinerberger, Nov 24 2007
If n is in A088232, a(n) = A000720(n-1) - A056170(n). - Robert Israel, Jun 28 2018

Examples

			a(10) = 4 because the cubes mod 10 repeat 0, 1, 8, 7, 4, 5, 6, 3, 2, 9, 0, 1, 8, 7, 4, 5, ... of which the 4 distinct primes are {2, 3, 5, 7}.
		

Crossrefs

Programs

  • Maple
    f:= proc(n)
      if numtheory:-phi(n) mod 3 = 0 then nops(select(isprime, {seq(i^3 mod n, i=0..n-1)}))
      else numtheory:-pi(n-1) - nops(select(t -> t[2]>1, ifactors(n)[2]))
      fi
    end proc:
    map(f, [$1..100]); # Robert Israel, Jun 28 2018
  • Mathematica
    Table[Length[Select[Union[Table[Mod[i^3, n], {i, 0, n}], Table[Mod[i^3, n], {i, 0, n}]], PrimeQ[ # ] &]], {n, 1, 70}] (* Stefan Steinerberger, Nov 12 2007 *)

Formula

a(n) = Card{p = k^3 mod n, for primes p and for all integers k}.

Extensions

More terms from Stefan Steinerberger, Nov 12 2007
Spelling/notation corrections by Charles R Greathouse IV, Mar 18 2010

A343783 a(n) is the largest primorial number (A002110) which divides phi(n).

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 6, 2, 6, 2, 2, 2, 6, 6, 2, 2, 2, 6, 6, 2, 6, 2, 2, 2, 2, 6, 6, 6, 2, 2, 30, 2, 2, 2, 6, 6, 6, 6, 6, 2, 2, 6, 6, 2, 6, 2, 2, 2, 6, 2, 2, 6, 2, 6, 2, 6, 6, 2, 2, 2, 30, 30, 6, 2, 6, 2, 6, 2, 2, 6, 2, 6, 6, 6, 2, 6, 30, 6, 6, 2, 6, 2, 2, 6, 2, 6
Offset: 1

Views

Author

Amiram Eldar, Apr 29 2021

Keywords

Examples

			a(3) = 2 since phi(3) = 2 and 2 = A002110(1).
a(5) = 2 since phi(5) = 4 and 2 = A002110(1) is the largest primorial dividing 4.
a(7) = 6 since phi(7) = 6 and 6 = A002110(2).
		

Crossrefs

Programs

  • Mathematica
    prim[n_] := Times @@ Prime[Range[n]]; gp[n_] := Module[{k = 1}, While[Divisible[n, prim[k]], k++]; prim[k - 1]]; a[n_] := gp[EulerPhi[n]]; Array[a, 100]
  • PARI
    f(n) = my(s=1); forprime(p=2, , if(n%p, return(s), s *= p)); \\ A053589
    a(n) = f(eulerphi(n)); \\ Michel Marcus, May 01 2021

Formula

a(n) = A053589(A000010(n)).
Let pr(n) be the largest prime divisor of a(n) (i.e., a(n) = pr(n)# = A034386(pr(n))). Then pr(n) ~ log(log(n))/log(log(log(n))) on a set of integers of asymptotic density 1 (Pollack and Pomerance, 2020).
From Bernard Schott, May 05 2021: (Start)
a(2n) = a(n) for n>=1.
a(n) = 1 iff n = 1 or n = 2.
a(n) = 2 iff 3 does not divide phi(n) (A088232)
a(n) >= 6 iff 3 divides phi(n) (A066498). (End)
Showing 1-8 of 8 results.