cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088494 Let P(n,k) = n!/(Product_{i=1..pi(n)/2^(k-1)} prime(i)) be an integer matrix of "partial" factorials. Then a(n) = sum_{k=1..8} floor( P(n,k)/P(n-1,k)).

Original entry on oeis.org

15, 20, 32, 36, 48, 41, 64, 72, 80, 78, 96, 81, 112, 120, 128, 120, 144, 94, 160, 168, 176, 162, 192, 200, 208, 216, 224, 177, 240, 218, 256, 264, 272, 280, 288, 195, 304, 312, 320, 288, 336, 261, 352, 360, 368, 330, 384, 392, 400, 408, 416, 212, 432, 440, 448
Offset: 2

Views

Author

Roger L. Bagula, Nov 10 2003

Keywords

Comments

The auxiliary integer array P is n! divided by the product of the first primes with an upper limit of the prime index given by A000720(n)/2^(k-1). It starts in row n=1 with columns k>=1 as:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 2, 2, 2, 2, 2, 2, ...
1, 3, 6, 6, 6, 6, 6, 6, ...
4, 12, 24, 24, 24, 24, 24, 24, ...
4, 60, 120, 120, 120, 120, 120, 120, ...
24, 360, 720, 720, 720, 720, 720, 720, ...
24, 840, 2520, 5040, 5040, 5040, 5040, 5040, ...
The a(n) are some sort of average integer value of ratios of neighbored rows in the first 8 columns.

Crossrefs

Programs

  • Maple
    P := proc(n,k)
        local a,i ;
        a := 1 ;
        for i from 1 to numtheory[pi](n)/2^(k-1) do
            a := ithprime(i) *a ;
        end do:
        n!/a ;
    end proc:
    A088494 := proc(n)
        add( floor(P(n,k)/P(n-1,k)),k=1..8) ;
    end proc: # R. J. Mathar, Sep 17 2013
  • Mathematica
    p[n_, k_]:= p[n,k]= n!/Product[Prime[i], {i, PrimePi[n]/2^(k-1)}];
    f[n_]:= f[n]= Sum[Floor[p[n, k]/p[n-1, k]], {k,8}];
    Table[f[n], {n,2,70}]
  • Sage
    @CachedFunction
    def f(n,k): return product( nth_prime(j) for j in (1..prime_pi(n)/2^(k-1)) )
    def A088494(n): return sum( (n*f(n-1,k)//f(n,k)) for k in (1..8) )
    [A088494(n) for n in (2..70)] # G. C. Greubel, Mar 27 2022

Formula

a(n) = Sum_{k=1..8} floor(p(n,k)/p(n-1,k)), where p(n, k) = n!/( Product_{j=1..PrimePi(n)/2^(k-1)} Prime(j) ). - G. C. Greubel, Mar 27 2022

Extensions

Meaningful name by R. J. Mathar, Sep 17 2013