cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A096900 a(n) = (A088558(n)-1)/2.

Original entry on oeis.org

1, 7, 2, 31, 10, 3, 22, 127, 38, 4, 58, 27, 82, 16, 5, 511, 142, 32, 178, 19, 6, 52, 262, 123, 310, 76, 362, 7, 418, 59, 478, 2047, 42, 136, 25, 8, 682, 172, 66, 115, 838, 47, 922, 28, 9, 256, 1102, 507, 1198, 304, 126, 52, 1402, 356, 10, 103, 162, 412, 1738, 80, 1858
Offset: 1

Views

Author

Ray Chandler, Jul 14 2004

Keywords

Crossrefs

A096891 Least hypotenuse of primitive Pythagorean triangles with odd leg 2n+1.

Original entry on oeis.org

5, 13, 25, 41, 61, 85, 17, 145, 181, 29, 265, 313, 365, 421, 481, 65, 37, 685, 89, 841, 925, 53, 1105, 1201, 149, 1405, 73, 185, 1741, 1861, 65, 97, 2245, 269, 2521, 2665, 317, 85, 3121, 3281, 3445, 157, 425, 3961, 109, 485, 193, 4705, 101, 5101, 5305, 137
Offset: 1

Views

Author

Ray Chandler, Jul 14 2004

Keywords

Comments

Ordered terms are A020882. - Paul Curtz, Sep 08 2008
Least value of x^2 + y^2 with gcd(x,y) = 1 such that y^2 - x^2 = 2n+1. - Thomas Ordowski, Apr 02 2017

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 2}, While[c = Sqrt[(2n + 1)^2 + k^2]; ! IntegerQ@ c || GCD[2n + 1, c, k] > 1, k += 2]; c]; Array[f, 52] (* Robert G. Wilson v, Mar 18 2014 *)

A088557 Least even leg of primitive Pythagorean triangles with odd leg 2n+1.

Original entry on oeis.org

4, 12, 24, 40, 60, 84, 8, 144, 180, 20, 264, 312, 364, 420, 480, 56, 12, 684, 80, 840, 924, 28, 1104, 1200, 140, 1404, 48, 176, 1740, 1860, 16, 72, 2244, 260, 2520, 2664, 308, 36, 3120, 3280, 3444, 132, 416, 3960, 60, 476, 168, 4704, 20, 5100, 5304, 88, 5724, 5940
Offset: 1

Views

Author

Lekraj Beedassy, Nov 17 2003

Keywords

Comments

a(n) shares identical entries with A046092(n) except for n=(A081934 - 1)/2.

Crossrefs

Programs

  • Mathematica
    a[n_] := 2k /. Solve[k > 0 && 1 < h < 2k + 2n + 1 && (2k)^2 + (2n + 1)^2 == h^2 && GCD[2k, 2n + 1, h] == 1, {k, h}, Integers][[1]];
    a /@ Range[54] (* Jean-François Alcover, Mar 05 2020 *)

Extensions

Corrected and extended by Ray Chandler, Jul 14 2004

A096892 Least semiperimeter of primitive Pythagorean triangles with odd leg 2n+1.

Original entry on oeis.org

6, 15, 28, 45, 66, 91, 20, 153, 190, 35, 276, 325, 378, 435, 496, 77, 42, 703, 104, 861, 946, 63, 1128, 1225, 170, 1431, 88, 209, 1770, 1891, 72, 117, 2278, 299, 2556, 2701, 350, 99, 3160, 3321, 3486, 187, 464, 4005, 130, 527, 228, 4753, 110, 5151, 5356, 165
Offset: 1

Views

Author

Ray Chandler, Jul 14 2004

Keywords

Crossrefs

A096893 Least area/6 of primitive Pythagorean triangles with odd leg 2n+1.

Original entry on oeis.org

1, 5, 14, 30, 55, 91, 10, 204, 285, 35, 506, 650, 819, 1015, 1240, 154, 35, 2109, 260, 2870, 3311, 105, 4324, 4900, 595, 6201, 220, 836, 8555, 9455, 84, 390, 12529, 1495, 14910, 16206, 1925, 231, 20540, 22140, 23821, 935, 3016, 29370, 455, 3689, 1330
Offset: 1

Views

Author

Ray Chandler, Jul 14 2004

Keywords

Crossrefs

A096894 Least inradius of primitive Pythagorean triangles with odd leg 2n+1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 3, 8, 9, 6, 11, 12, 13, 14, 15, 12, 5, 18, 15, 20, 21, 10, 23, 24, 21, 26, 15, 24, 29, 30, 7, 20, 33, 30, 35, 36, 33, 14, 39, 40, 41, 30, 39, 44, 21, 42, 35, 48, 9, 50, 51, 28, 53, 54, 51, 56, 45, 18, 35, 60, 57, 62, 63, 60, 65, 42, 55, 68, 69, 66, 11, 60, 69, 74
Offset: 1

Views

Author

Ray Chandler, Jul 14 2004

Keywords

References

  • Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32. Solution published in Vol. 16, Issue 2, November 2008, p. 32.

Crossrefs

A096895 a(n) = A088557(n)/4.

Original entry on oeis.org

1, 3, 6, 10, 15, 21, 2, 36, 45, 5, 66, 78, 91, 105, 120, 14, 3, 171, 20, 210, 231, 7, 276, 300, 35, 351, 12, 44, 435, 465, 4, 18, 561, 65, 630, 666, 77, 9, 780, 820, 861, 33, 104, 990, 15, 119, 42, 1176, 5, 1275, 1326, 22, 1431, 1485, 170, 1596, 63, 11, 30, 1830
Offset: 1

Views

Author

Ray Chandler, Jul 14 2004

Keywords

Crossrefs

A096896 Least hypotenuse of primitive Pythagorean triangles with even leg 4n.

Original entry on oeis.org

5, 17, 13, 65, 29, 25, 53, 257, 85, 41, 125, 73, 173, 65, 61, 1025, 293, 97, 365, 89, 85, 137, 533, 265, 629, 185, 733, 113, 845, 169, 965, 4097, 157, 305, 149, 145, 1373, 377, 205, 281, 1685, 193, 1853, 185, 181, 545, 2213, 1033, 2405, 641, 325, 233, 2813, 745
Offset: 1

Views

Author

Ray Chandler, Jul 14 2004

Keywords

Crossrefs

A096897 Least semiperimeter of primitive Pythagorean triangles with even leg 4n.

Original entry on oeis.org

6, 20, 15, 72, 35, 28, 63, 272, 99, 45, 143, 88, 195, 77, 66, 1056, 323, 117, 399, 104, 91, 165, 575, 304, 675, 221, 783, 120, 899, 204, 1023, 4160, 187, 357, 170, 153, 1443, 437, 247, 336, 1763, 228, 1935, 209, 190, 621, 2303, 1120, 2499, 725, 391, 273, 2915
Offset: 1

Views

Author

Ray Chandler, Jul 14 2004

Keywords

Crossrefs

A096898 Least area/6 of primitive Pythagorean triangles with even leg 4n.

Original entry on oeis.org

1, 10, 5, 84, 35, 14, 105, 680, 231, 30, 429, 220, 715, 154, 55, 5456, 1615, 390, 2261, 260, 91, 770, 4025, 1976, 5175, 1326, 6525, 140, 8091, 1190, 9889, 43680, 935, 3094, 595, 204, 16835, 4370, 1729, 3080, 22919, 1330, 26445, 836, 285, 7866, 34545, 16240
Offset: 1

Views

Author

Ray Chandler, Jul 14 2004

Keywords

Crossrefs

Showing 1-10 of 11 results. Next