A088699 Array read by antidiagonals of coefficients of generating function exp(x)/(1-y-xy).
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 13, 13, 5, 1, 1, 6, 21, 34, 21, 6, 1, 1, 7, 31, 73, 73, 31, 7, 1, 1, 8, 43, 136, 209, 136, 43, 8, 1, 1, 9, 57, 229, 501, 501, 229, 57, 9, 1, 1, 10, 73, 358, 1045, 1546, 1045, 358, 73, 10, 1, 1, 11, 91, 529, 1961, 4051, 4051, 1961
Offset: 0
Examples
1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 1 3 7 13 21 31 43 57 73 1 4 13 34 73 136 229 358 529 1 5 21 73 209 501 1045 1961 3393 1 6 31 136 501 1546 4051 9276 19081 1 7 43 229 1045 4051 13327 37633 93289 1 8 57 358 1961 9276 37633 130922 394353 1 9 73 529 3393 19081 93289 394353 1441729
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1274
- R. J. Mathar, The number of binary nXm matrices with at most k 1's in each row or column, (2014) Table 1.
- Eric Weisstein's World of Mathematics, Rook Graph
- Eric Weisstein's World of Mathematics, Vertex Cover
- Wikipedia, Rook polynomial
Programs
-
Maple
A088699 := proc(i,j) add(binomial(i,k)*binomial(j,k)*k!,k=0..min(i,j)) ; end proc: # R. J. Mathar, Feb 28 2015
-
Mathematica
max = 11; se = Series[E^x/(1 - y - x*y), {x, 0, max}, {y, 0, max}] // Normal // Expand; a[i_, j_] := SeriesCoefficient[se, {x, 0, i}, {y, 0, j}]*i!; Flatten[ Table[ a[i - j, j], {i, 0, max}, {j, 0, i}]] (* Jean-François Alcover, May 15 2012 *)
-
PARI
A(i,j)=if(i<0 || j<0,0,i!*polcoeff(exp(x+x*O(x^i))*(1+x)^j,i))
-
PARI
A(i,j)=if(i<0 || j<0,0,i!*polcoeff(exp(x/(1-x)+x*O(x^i))*(1-x)^(i-j-1),i))
-
PARI
A(i,j)=local(M); if(i<0 || j<0,0,M=matrix(j+1,j+1,n,m,if(n==m,1,if(n==m+1,m))); (M^i)[j+1,]*vectorv(j+1,n,1)) /* Michael Somos, Jul 03 2004 */
Formula
E.g.f.: exp(x)/(1-y-xy)=Sum_{i, j} A(i, j) y^j x^i/i!.
A(i, j) = A(i-1, j)+j*A(i-1, j-1)+(i==0) = A(j, i).
T(n, k) = sum{j=0..k, C(n, k-j)*k!/j!} = sum{j=0..k, (k-j)!*C(k, j)C(n, k-j)}. - Paul Barry, Nov 14 2005
A(i,j) = sum_k C(i,k)*C(j,k)*k!. E.g.f.: sum_{i,j} a(i,j)*x^i/i!*y^j/j! = e^{x+y+xy}. - Franklin T. Adams-Watters, Feb 06 2006
The LDU factorization of this array, formatted as a square array, is P * D * transpose(P), where P is Pascal's triangle A007318 and D = diag(0!, 1!, 2!, ... ). Compare with A099597. - Peter Bala, Nov 06 2007
A(i,j) = (-1)^-i HypergeometricU(-i, 1 - i + j, -1). - Eric W. Weisstein, May 10 2017
Comments