cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088699 Array read by antidiagonals of coefficients of generating function exp(x)/(1-y-xy).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 13, 13, 5, 1, 1, 6, 21, 34, 21, 6, 1, 1, 7, 31, 73, 73, 31, 7, 1, 1, 8, 43, 136, 209, 136, 43, 8, 1, 1, 9, 57, 229, 501, 501, 229, 57, 9, 1, 1, 10, 73, 358, 1045, 1546, 1045, 358, 73, 10, 1, 1, 11, 91, 529, 1961, 4051, 4051, 1961
Offset: 0

Views

Author

Michael Somos, Oct 08 2003

Keywords

Comments

A(n,m) is the number of ways to pair the elements of two sets (with respectively n and m elements), where each element of either set may be paired with zero or one elements of the other set; number of n X m matrices of zeros and ones with at most one one in each row and column. E.g., A(2,2)=7 because we can pair {A,B} with {C,D} as {AB,CD}, {AC,BD}, {AC,B,D}, {AD,B,C}, {BC,A,D}, {BD,A,C}, or {A,B,C,D}. - Franklin T. Adams-Watters, Feb 06 2006
Compare with A086885. - Peter Bala, Sep 17 2008
A(n,m) is the number of vertex covers and independent vertex sets in the n X m lattice (rook) graph K_n X K_m. - Andrew Howroyd, May 14 2017

Examples

			      1       1       1       1       1       1       1       1       1
      1       2       3       4       5       6       7       8       9
      1       3       7      13      21      31      43      57      73
      1       4      13      34      73     136     229     358     529
      1       5      21      73     209     501    1045    1961    3393
      1       6      31     136     501    1546    4051    9276   19081
      1       7      43     229    1045    4051   13327   37633   93289
      1       8      57     358    1961    9276   37633  130922  394353
      1       9      73     529    3393   19081   93289  394353 1441729
		

Crossrefs

Row sums give A081124.
Main diagonal is A002720.

Programs

  • Maple
    A088699 := proc(i,j)
        add(binomial(i,k)*binomial(j,k)*k!,k=0..min(i,j)) ;
    end proc: # R. J. Mathar, Feb 28 2015
  • Mathematica
    max = 11; se = Series[E^x/(1 - y - x*y), {x, 0, max}, {y, 0, max}] // Normal // Expand; a[i_, j_] := SeriesCoefficient[se, {x, 0, i}, {y, 0, j}]*i!; Flatten[ Table[ a[i - j, j], {i, 0, max}, {j, 0, i}]] (* Jean-François Alcover, May 15 2012 *)
  • PARI
    A(i,j)=if(i<0 || j<0,0,i!*polcoeff(exp(x+x*O(x^i))*(1+x)^j,i))
    
  • PARI
    A(i,j)=if(i<0 || j<0,0,i!*polcoeff(exp(x/(1-x)+x*O(x^i))*(1-x)^(i-j-1),i))
    
  • PARI
    A(i,j)=local(M); if(i<0 || j<0,0,M=matrix(j+1,j+1,n,m,if(n==m,1,if(n==m+1,m))); (M^i)[j+1,]*vectorv(j+1,n,1)) /* Michael Somos, Jul 03 2004 */

Formula

E.g.f.: exp(x)/(1-y-xy)=Sum_{i, j} A(i, j) y^j x^i/i!.
A(i, j) = A(i-1, j)+j*A(i-1, j-1)+(i==0) = A(j, i).
T(n, k) = sum{j=0..k, C(n, k-j)*k!/j!} = sum{j=0..k, (k-j)!*C(k, j)C(n, k-j)}. - Paul Barry, Nov 14 2005
A(i,j) = sum_k C(i,k)*C(j,k)*k!. E.g.f.: sum_{i,j} a(i,j)*x^i/i!*y^j/j! = e^{x+y+xy}. - Franklin T. Adams-Watters, Feb 06 2006
The LDU factorization of this array, formatted as a square array, is P * D * transpose(P), where P is Pascal's triangle A007318 and D = diag(0!, 1!, 2!, ... ). Compare with A099597. - Peter Bala, Nov 06 2007
A(i,j) = (-1)^-i HypergeometricU(-i, 1 - i + j, -1). - Eric W. Weisstein, May 10 2017