cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A088711 Numbers m that are a product of two primes j and k such that both m+j+k and m-j-k are primes.

Original entry on oeis.org

10, 14, 15, 21, 26, 33, 35, 38, 51, 65, 86, 93, 111, 123, 161, 201, 203, 206, 209, 215, 221, 278, 321, 371, 395, 398, 413, 471, 485, 533, 543, 545, 551, 626, 671, 698, 723, 755, 779, 803, 815, 866, 905, 993, 1046, 1286, 1349, 1371, 1383, 1385, 1403, 1461
Offset: 1

Views

Author

Chuck Seggelin, Oct 11 2003

Keywords

Examples

			a(1)=10 because 10 has only one pair of prime factors (2 and 5) and both 10+2+5 and 10-2-5 (17 and 3) are primes.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:={1,1}==Last/@FactorInteger[n];b[n_]:=First[First/@FactorInteger[n]]+Last[First/@FactorInteger[n]];Select[Range[6,3000],a[#]&&PrimeQ[#-b[#]]&&PrimeQ[#+b[#]]&] (* Vladimir Joseph Stephan Orlovsky, Mar 03 2011 *)
    Reap[Do[fi=FactorInteger[n]; la=Last/@fi; If[{1,1}==la, pq=fi[[1,1]]+fi[[2,1]];If[PrimeQ[n-pq] && PrimeQ[n+pq], Sow[n]]], {n,6,200000}]][[2,1]] (* used to create b-file, Zak Seidov, Mar 04 2011 *)

A271568 Squarefree semiprimes n such that phi(n) - 1 is prime.

Original entry on oeis.org

10, 14, 15, 21, 26, 33, 35, 38, 39, 51, 62, 65, 69, 77, 86, 91, 93, 95, 111, 122, 123, 129, 133, 146, 159, 161, 201, 203, 206, 209, 213, 215, 217, 218, 221, 249, 278, 287, 291, 299, 301, 302, 303, 305, 321, 335, 339, 362, 371, 381, 386, 395, 398, 403
Offset: 1

Views

Author

Keywords

Comments

Equals (A001358 intersection A078892) - A001248.
Appears to be equal to A088710 without the 9. - R. J. Mathar, Jun 21 2025

Examples

			15 is in the sequence, because 15 = 3*5 is a semiprime with omega(15) = 2 and phi(15) - 1 = 2*4 - 1 = 7 is a prime.
21 is in the sequence, because 21 = 3*7 is a semiprime with omega(21) = 2 and phi(21) - 1 = 2*6 - 1 = 11 is a prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..500] |(EulerPhi(n)+DivisorSigma(1,n)) eq 2*(n+1) and IsPrime(EulerPhi(n)-1)]; // Vincenzo Librandi, Jul 29 2016
  • Maple
    with(numtheory):
    is_A271568 := n -> issqrfree(n) and bigomega(n) = 2 and isprime(phi(n)-1):
    select(is_A271568, [$1..403]); # Peter Luschny, Jul 21 2016
  • Mathematica
    A271568Q = SquareFreeQ[#] && PrimeNu[#] == 2 && PrimeQ[EulerPhi[#] - 1] &; Select[Range[500], A271568Q] (* JungHwan Min, Jul 29 2016 *)
  • PARI
    is_a001358(n) = bigomega(n)==2
    is_a005117(n) = issquarefree(n)
    is_a078892(n) = ispseudoprime(eulerphi(n)-1)
    is(n) = is_a001358(n) && is_a005117(n) && is_a078892(n) \\ Felix Fröhlich, Jul 21 2016
    
  • PARI
    is(n)=my(f=factor(n)); f[,2]==[1,1]~ && isprime((f[1,1]-1)*(f[2,1]-1)-1) \\ Charles R Greathouse IV, Jul 21 2016
    
  • PARI
    list(lim)=my(v=List()); forprime(p=2, sqrt(lim), forprime(q=p+1, lim\p, if(isprime((p-1)*(q-1)-1), listput(v, p*q)))); Set(v) \\ Charles R Greathouse IV, Aug 29 2016
    

Extensions

New name from Charles R Greathouse IV, Jul 29 2016
Showing 1-2 of 2 results.