A088711 Numbers m that are a product of two primes j and k such that both m+j+k and m-j-k are primes.
10, 14, 15, 21, 26, 33, 35, 38, 51, 65, 86, 93, 111, 123, 161, 201, 203, 206, 209, 215, 221, 278, 321, 371, 395, 398, 413, 471, 485, 533, 543, 545, 551, 626, 671, 698, 723, 755, 779, 803, 815, 866, 905, 993, 1046, 1286, 1349, 1371, 1383, 1385, 1403, 1461
Offset: 1
Keywords
Examples
a(1)=10 because 10 has only one pair of prime factors (2 and 5) and both 10+2+5 and 10-2-5 (17 and 3) are primes.
Links
- Zak Seidov, Table of n, a(n) for n=1..1616, a(n)<200000
Programs
-
Mathematica
a[n_]:={1,1}==Last/@FactorInteger[n];b[n_]:=First[First/@FactorInteger[n]]+Last[First/@FactorInteger[n]];Select[Range[6,3000],a[#]&&PrimeQ[#-b[#]]&&PrimeQ[#+b[#]]&] (* Vladimir Joseph Stephan Orlovsky, Mar 03 2011 *) Reap[Do[fi=FactorInteger[n]; la=Last/@fi; If[{1,1}==la, pq=fi[[1,1]]+fi[[2,1]];If[PrimeQ[n-pq] && PrimeQ[n+pq], Sow[n]]], {n,6,200000}]][[2,1]] (* used to create b-file, Zak Seidov, Mar 04 2011 *)
Comments