A088828 Nonsquare positive odd numbers.
3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 123, 125, 127, 129, 131, 133, 135, 137, 139
Offset: 1
Examples
n = p prime, abundance = 1 - p = even and negative; n = 21, sigma = 1 + 3 + 7 + 21 = 32, abundance = 32 - 42 = -20.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[ n: n in [1..140 by 2] | IsEven(SumOfDivisors(n)-2*n) ]; // Klaus Brockhaus, Apr 15 2009
-
Mathematica
Do[s=DivisorSigma[1, n]-2*n; If[ !OddQ[s]&&OddQ[n], Print[{n, s}]], {n, 1, 1000}] Select[Range[1, 500, 2], EvenQ[DivisorSigma[1, #] - 2 #] &] (* Vladimir Joseph Stephan Orlovsky, Apr 15 2011 *)
-
PARI
isok(n) = (n>0) && (n % 2) && ! issquare(n); \\ Michel Marcus, Aug 28 2013
-
Python
from itertools import count, islice from sympy.ntheory.primetest import is_square def A088828_gen(startvalue=1): # generator of terms >= startvalue return filter(lambda n:not is_square(n),count(max(startvalue+(startvalue&1^1),1),2)) A088828_list = list(islice(A088828_gen(),30)) # Chai Wah Wu, Jul 06 2023
-
Python
from math import isqrt def A088828(n): return (s:=(m:=isqrt(k:=(n<<1)-1))+(k-m*(m+1)>=1))+k+(s&1) # Chai Wah Wu, Jun 19 2024
Formula
a(n) = 2*n + s - ((s+1) mod 2) where s = round(sqrt(2*n-1)). - Gerald Hillier, Apr 15 2009
a(n) = 2*(n+h) + 1 where h = floor((1/4)*(sqrt(8*n) - 1)) is the largest value such that A014105(h) < n. - John Tyler Rascoe, Jul 05 2022
Extensions
Entry revised by N. J. A. Sloane, Jan 31 2014 at the suggestion of Omar E. Pol
Comments