cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088828 Nonsquare positive odd numbers.

Original entry on oeis.org

3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 123, 125, 127, 129, 131, 133, 135, 137, 139
Offset: 1

Views

Author

Labos Elemer, Oct 28 2003

Keywords

Comments

Odd numbers with even abundance: primes and some composites too.
Odd numbers with odd abundance are in A016754. Even numbers with odd abundance are in A088827. Even numbers with even abundance are in A088829.
Or, odd numbers without the squares. - Gerald Hillier, Apr 12 2009

Examples

			n = p prime, abundance = 1 - p = even and negative;
n = 21, sigma = 1 + 3 + 7 + 21 = 32, abundance = 32 - 42 = -20.
		

Crossrefs

Programs

  • Magma
    [ n: n in [1..140 by 2] | IsEven(SumOfDivisors(n)-2*n) ]; // Klaus Brockhaus, Apr 15 2009
    
  • Mathematica
    Do[s=DivisorSigma[1, n]-2*n; If[ !OddQ[s]&&OddQ[n], Print[{n, s}]], {n, 1, 1000}]
    Select[Range[1, 500, 2], EvenQ[DivisorSigma[1, #] - 2 #] &] (* Vladimir Joseph Stephan Orlovsky, Apr 15 2011 *)
  • PARI
    isok(n) = (n>0) && (n % 2) && ! issquare(n); \\ Michel Marcus, Aug 28 2013
    
  • Python
    from itertools import count, islice
    from sympy.ntheory.primetest import is_square
    def A088828_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:not is_square(n),count(max(startvalue+(startvalue&1^1),1),2))
    A088828_list = list(islice(A088828_gen(),30)) # Chai Wah Wu, Jul 06 2023
    
  • Python
    from math import isqrt
    def A088828(n): return (s:=(m:=isqrt(k:=(n<<1)-1))+(k-m*(m+1)>=1))+k+(s&1) # Chai Wah Wu, Jun 19 2024

Formula

a(n) = 2*n + s - ((s+1) mod 2) where s = round(sqrt(2*n-1)). - Gerald Hillier, Apr 15 2009
A005408 SETMINUS A016754. - R. J. Mathar, Jun 16 2018
a(n) = 2*(n+h) + 1 where h = floor((1/4)*(sqrt(8*n) - 1)) is the largest value such that A014105(h) < n. - John Tyler Rascoe, Jul 05 2022

Extensions

Entry revised by N. J. A. Sloane, Jan 31 2014 at the suggestion of Omar E. Pol