A088855 Triangle read by rows: number of symmetric Dyck paths of semilength n with k peaks.
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 4, 2, 1, 1, 3, 6, 6, 3, 1, 1, 3, 9, 9, 9, 3, 1, 1, 4, 12, 18, 18, 12, 4, 1, 1, 4, 16, 24, 36, 24, 16, 4, 1, 1, 5, 20, 40, 60, 60, 40, 20, 5, 1, 1, 5, 25, 50, 100, 100, 100, 50, 25, 5, 1, 1, 6, 30, 75, 150, 200, 200, 150, 75, 30, 6, 1, 1, 6, 36, 90, 225, 300, 400, 300, 225, 90, 36, 6, 1
Offset: 1
Examples
Triangle begins: 1; 1, 1; 1, 1, 1; 1, 2, 2, 1; 1, 2, 4, 2, 1; 1, 3, 6, 6, 3, 1; 1, 3, 9, 9, 9, 3, 1; 1, 4, 12, 18, 18, 12, 4, 1; 1, 4, 16, 24, 36, 24, 16, 4, 1; 1, 5, 20, 40, 60, 60, 40, 20, 5, 1; 1, 5, 25, 50, 100, 100, 100, 50, 25, 5, 1; 1, 6, 30, 75, 150, 200, 200, 150, 75, 30, 6, 1; 1, 6, 36, 90, 225, 300, 400, 300, 225, 90, 36, 6, 1; 1, 7, 42, 126, 315, 525, 700, 700, 525, 315, 126, 42, 7, 1; 1, 7, 49, 147, 441, 735, 1225, 1225, 1225, 735, 441, 147, 49, 7, 1; 1, 8, 56, 196, 588, 1176, 1960, 2450, 2450, 1960, 1176, 588, 196, 56, 8, 1; ... a(6,2)=3 because we have UUUDDDUUUDDD, UUUUDDUUDDDD, UUUUUDUDDDDD, where U=(1,1), D=(1,-1).
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- Per Alexandersson, Svante Linusson, Samu Potka, and Joakim Uhlin, Refined Catalan and Narayana cyclic sieving, arXiv:2010.11157 [math.CO], 2020.
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
- Hyunsoo Cho, JiSun Huh, and Jaebum Sohn, The (s, s + d, ..., s + pd)-core partitions and the rational Motzkin paths, arXiv:2001.06651 [math.CO], 2020.
- Johann Cigler, Some remarks and conjectures related to lattice paths in strips along the x-axis, arXiv:1501.04750 [math.CO], 2015-2016.
- Johann Cigler, Pascal triangle, Hoggatt matrices, and analogous constructions, arXiv:2103.01652 [math.CO], 2021.
- Nicolas Crampe, Julien Gaboriaud, and Luc Vinet, Racah algebras, the centralizer Z_n(sl_2) and its Hilbert-Poincaré series, arXiv:2105.01086 [math.RT], 2021.
- L. Poulain d'Andecy, Centralisers and Hecke algebras in Representation Theory, with applications to Knots and Physics, arXiv:2304.00850 [math.RT], 2023. See p. 64.
- Vladimir Shevelev, Several remarks on A088855, Seqfan thread, Nov 19 2017.
Crossrefs
Programs
-
Magma
[(&*[Binomial(Floor((n-j)/2), Floor((k-j)/2)): j in [0..1]]): k in [1..n], n in [1..15]]; // G. C. Greubel, Apr 08 2022
-
Mathematica
T[n_, k_] := Binomial[Quotient[n-1, 2], Quotient[k-1, 2]]*Binomial[ Quotient[n, 2], Quotient[k, 2]]; Table[T[n, k], {n,13}, {k,n}]//Flatten (* Jean-François Alcover, Jun 07 2018 *)
-
PARI
T(n,k) = binomial((n-1)\2, (k-1)\2)*binomial(n\2, k\2); \\ Andrew Howroyd, Nov 15 2017
-
Sage
def A088855(n,k): return product(binomial( (n-j)//2, (k-j)//2 ) for j in (0..1)) flatten([[A088855(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Apr 08 2022
Formula
T(n, k) = binomial(floor(n'), floor(k'))*binomial(ceiling(n'), ceiling(k')), where n' = (n-1)/2, k' = (k-1)/2.
G.f.: 2*u/(u*v + sqrt(x*y*u*v)) - 1, where x = 1+z+t*z, y = 1+z-t*z, u = 1-z+t*z, v = 1-z-t*z.
Triangle T(n,k), 0 <= k <= n, given by A101455 DELTA A056594 begins: 1; 0,1; 0,1,1; 0,1,1,1; 0,1,2,2,1; 0,1,2,4,2,1; 0,1,3,6,6,3,1; 0,1,3,9,9,9,3,1; ... - Philippe Deléham, Jan 03 2009
From G. C. Greubel, Apr 08 2022: (Start)
T(n, n-k+1) = T(n, k).
T(2*n-1, n) = A018224(n-1), n >= 1.
T(2*n, n) = A005566(n-1), n >= 1. (End)
Extensions
Keyword:tabl added Philippe Deléham, Jan 25 2010
Comments