A089072 Triangle read by rows: T(n,k) = k^n, n >= 1, 1 <= k <= n.
1, 1, 4, 1, 8, 27, 1, 16, 81, 256, 1, 32, 243, 1024, 3125, 1, 64, 729, 4096, 15625, 46656, 1, 128, 2187, 16384, 78125, 279936, 823543, 1, 256, 6561, 65536, 390625, 1679616, 5764801, 16777216, 1, 512, 19683, 262144, 1953125, 10077696, 40353607, 134217728, 387420489
Offset: 1
Examples
Triangle begins: 1; 1, 4; 1, 8, 27; 1, 16, 81, 256; 1, 32, 243, 1024, 3125; 1, 64, 729, 4096, 15625, 46656; ...
Links
- Reinhard Zumkeller, Rows n = 1..100 of triangle, flattened
- Mohammad K. Azarian, Remarks and Conjectures Regarding Combinatorics of Discrete Partial Functions, Int'l Math. Forum (2022) Vol. 17, No. 3, 129-141. See Theorem 2.1(ii).
Crossrefs
Programs
-
Haskell
a089072 = flip (^) a089072_row n = map (a089072 n) [1..n] a089072_tabl = map a089072_row [1..] -- Reinhard Zumkeller, Mar 18 2013
-
Magma
[k^n: k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 01 2022
-
Mathematica
Column[Table[k^n, {n, 8}, {k, n}], Center] (* Alonso del Arte, Nov 14 2011 *)
-
SageMath
flatten([[k^n for k in range(1,n+1)] for n in range(1,12)]) # G. C. Greubel, Nov 01 2022
Formula
Sum_{k=1..n} T(n, k) = A031971(n).
T(n, n) = A000312(n).
T(2*n, n) = A062206(n).
a(n) = (n + T*(1-T)/2)^T, where T = round(sqrt(2*n),0). - Gerald Hillier, Apr 12 2015
T(n,k) = A051129(n,k). - R. J. Mathar, Dec 10 2015
T(n,k) = Sum_{i=0..k} Stirling2(n,i)*binomial(k,i)*i!. - Geoffrey Critzer, Dec 30 2021
From G. C. Greubel, Nov 01 2022: (Start)
T(n, n-1) = A007778(n-1), n >= 2.
T(n, n-2) = A008788(n-2), n >= 3.
T(2*n+1, n) = A085526(n).
T(2*n-1, n) = A085524(n).
T(2*n-1, n-1) = A085526(n-1), n >= 2.
T(3*n, n) = A083282(n).
Sum_{k=1..n} (-1)^k * T(n, k) = (-1)^n * A120485(n).
Sum_{k=1..floor(n/2)} T(n-k, k) = A226065(n).
Sum_{k=1..floor(n/2)} T(n, k) = A352981(n).
Sum_{k=1..floor(n/3)} T(n, k) = A352982(n). (End)
Extensions
More terms and better definition from Herman Jamke (hermanjamke(AT)fastmail.fm), Jul 10 2004
Offset corrected by Reinhard Zumkeller, Mar 18 2013
Comments