A089162 Triangle read by rows formed by the prime factors of Mersenne number 2^prime(n) - 1, n >= 1.
3, 7, 31, 127, 23, 89, 8191, 131071, 524287, 47, 178481, 233, 1103, 2089, 2147483647, 223, 616318177, 13367, 164511353, 431, 9719, 2099863, 2351, 4513, 13264529, 6361, 69431, 20394401, 179951, 3203431780337, 2305843009213693951, 193707721, 761838257287
Offset: 1
Examples
The 16th Mersenne number 2^53-1 has the three prime factors 6361, 69431, 20394401. See tail end of second row in the sequence. Each factor is == 1 (mod 53). Triangle begins: 3; 7; 31; 127; 23, 89; 8191; 131071; 524287; 47, 178481; 233, 1103, 2089; 2147483647; 223, 616318177; 13367, 164511353; 431, 9719, 2099863; 2351, 4513, 13264529; 6361, 69431, 20394401;
Links
- Max Alekseyev, Rows n = 1..197, flattened (rows 1..167 from Jens Kruse Andersen)
- R. P. Brent, New factors of Mersenne numbers.
- Chris K. Caldwell, Mersenne Primes: History, Theorems and Lists.
- Chris K. Caldwell, The Prime Glossary, Mersenne divisor.
- Sam Wagstaff, The Cunningham Project.
Programs
-
Mathematica
row[n_]:=First/@FactorInteger[2^Prime[n]-1]; Array[row,19]//Flatten (* Stefano Spezia, May 03 2024 *)
-
PARI
mersenne(b,n,d) = { c=0; forprime(x=2,n, c++; y = b^x-1; f=factor(y); v=component(f,1); ln = length(v); if(ln>=d,print1(v[d]",")); ) }
Extensions
Definition corrected by Max Alekseyev, Jul 25 2023
Comments