cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A122094 Prime divisors of Mersenne numbers. Primes p such that the multiplicative order of 2 modulo p is prime.

Original entry on oeis.org

3, 7, 23, 31, 47, 89, 127, 167, 223, 233, 263, 359, 383, 431, 439, 479, 503, 719, 839, 863, 887, 983, 1103, 1319, 1367, 1399, 1433, 1439, 1487, 1823, 1913, 2039, 2063, 2089, 2207, 2351, 2383, 2447, 2687, 2767, 2879, 2903, 2999, 3023, 3119, 3167, 3343
Offset: 1

Views

Author

Max Alekseyev, Oct 25 2006

Keywords

Comments

Except for the first term (3), all terms are 1 or 7 (mod 8). - William Hu, May 03 2024

Crossrefs

Cf. A089162 (this list sorted by q).

Programs

  • Magma
    [p: p in PrimesInInterval(2, 4000) | IsPrime(Modorder(2, p))]; // Vincenzo Librandi, Oct 28 2016
  • Mathematica
    Reap[For[p=2, p<10^5, p=NextPrime[p], If[PrimeQ[MultiplicativeOrder[2, p]], Sow[p]]]][[2, 1]] (* Jean-François Alcover, Dec 10 2015 *)
    Select[Prime@ Range@ 500, PrimeQ@ MultiplicativeOrder[2, #] &] (* Michael De Vlieger, Oct 28 2016 *)
  • PARI
    forprime(p=3,10^5,if(isprime(znorder(Mod(2,p))),print1(p,",")))
    

Formula

p is a prime divisor of a Mersenne number 2^q - 1 iff prime q is the multiplicative order of 2 modulo p.

A244453 Prime factors of 2^A054723(n)-1, ordered by increasing n, then by increasing size of the factors.

Original entry on oeis.org

23, 89, 47, 178481, 233, 1103, 2089, 223, 616318177, 13367, 164511353, 431, 9719, 2099863, 2351, 4513, 13264529, 6361, 69431, 20394401, 179951, 3203431780337, 193707721, 761838257287, 228479, 48544121, 212885833
Offset: 1

Views

Author

Felix Fröhlich, Jun 28 2014

Keywords

Comments

Subsequence of A060443.
Prime factors of composite Mersenne numbers; A089162 with the Mersenne primes A000668 removed. - Jens Kruse Andersen, Jul 11 2014

Examples

			A054723(1) = 11. 2^11-1 = 2047 = 23*89. - _Jens Kruse Andersen_, Jul 11 2014
Triangle begins:
23, 89;
47, 178481;
233, 1103, 2089;
223, 616318177;
13367, 164511353;
431, 9719, 2099863;
2351, 4513, 13264529;
6361, 69431, 20394401;
		

Crossrefs

Programs

  • Mathematica
    Map[FactorInteger, Select[2^Prime@Range@20 - 1, CompositeQ]][[All, All, 1]] // Flatten (* Michael De Vlieger, Nov 20 2018 *)
  • PARI
    forprime(n=1, 100, m=2^n-1; if(!isprime(m), f=factor(m); for(i=1, #f~, print1(f[i,1]", ")))) \\ Jens Kruse Andersen, Jul 11 2014
Showing 1-2 of 2 results.