A089227 Numbers k such that 1 + k*ds(k) is prime, where ds(k) is the sum of digits of k.
1, 2, 4, 6, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 22, 28, 33, 34, 35, 38, 44, 46, 48, 50, 51, 54, 56, 59, 64, 68, 70, 71, 78, 80, 82, 84, 88, 90, 91, 92, 93, 94, 97, 98, 99, 100, 102, 104, 105, 106, 107, 109, 112, 116, 118, 123, 128, 129, 130, 136, 138, 140, 144, 145
Offset: 1
Examples
10 is in the sequence because A007953(10) = 1 and 1 + 10*1 = 11 is prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[k:k in [1..145] | IsPrime(1+k*(&+Intseq(k,10)))]; // Marius A. Burtea, Jun 21 2019
-
Maple
ds:= n -> convert(convert(n,base,10),`+`): filter:= n -> isprime(1+n*ds(n)): select(filter, [$1..1000]); # Robert Israel, Jun 20 2019
-
Mathematica
Do[k = Plus @@ IntegerDigits[n]; If[PrimeQ[n*k + 1], Print[n]], {n, 1, 100}] (* Ryan Propper *) Select[Range[150],PrimeQ[#*Total[IntegerDigits[#]]+1]&] (* Harvey P. Dale, May 25 2024 *)
-
PARI
isok(k) = isprime(1+k*sumdigits(k)); \\ Michel Marcus, Jun 20 2019
Extensions
More terms from David Wasserman, Aug 31 2005