A089259 Expansion of Product_{m>=1} 1/(1-x^m)^A000009(m).
1, 1, 2, 4, 7, 12, 22, 36, 61, 101, 166, 267, 433, 686, 1088, 1709, 2671, 4140, 6403, 9824, 15028, 22864, 34657, 52288, 78646, 117784, 175865, 261657, 388145, 573936, 846377, 1244475, 1825170, 2669776, 3895833, 5671127, 8236945, 11936594, 17261557, 24909756
Offset: 0
Keywords
Examples
From _Gus Wiseman_, Oct 22 2018: (Start) The a(6) = 22 set multipartitions of integer partitions of 6: (6) (15) (123) (12)(12) (1)(1)(1)(12) (1)(1)(1)(1)(1)(1) (24) (1)(14) (1)(1)(13) (1)(1)(1)(1)(2) (1)(5) (1)(23) (1)(2)(12) (2)(4) (2)(13) (1)(1)(1)(3) (3)(3) (3)(12) (1)(1)(2)(2) (1)(1)(4) (1)(2)(3) (2)(2)(2) (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Maple
with(combstruct): A089259:= [H, {H=Set(T, card>=1), T=PowerSet (Sequence (Z, card>=1), card>=1)}, unlabeled]; 1, seq (count (A089259, size=j), j=1..16); # Thomas Wieder, Aug 01 2008 # second Maple program: with(numtheory): b:= proc(n, i) if n<0 or n>i*(i+1)/2 then 0 elif n=0 then 1 elif i<1 then 0 else b(n,i):= b(n-i, i-1) +b(n, i-1) fi end: a:= proc(n) option remember; `if` (n=0, 1, add(add(d* b(d, d), d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..100); # Alois P. Heinz, Nov 11 2011
-
Mathematica
max = 40; CoefficientList[Series[Product[1/(1-x^m)^PartitionsQ[m], {m, 1, max}], {x, 0, max}], x] (* Jean-François Alcover, Mar 24 2014 *) b[n_, i_] := b[n, i] = Which[n<0 || n>i*(i+1)/2, 0, n == 0, 1, i<1, 0, True, b[n-i, i-1] + b[n, i-1]]; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d* b[d, d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 100} ] (* Jean-François Alcover, Feb 13 2016, after Alois P. Heinz *)
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} seq(n)={concat([1], EulerT(Vec(eta(x^2 + O(x*x^n))/eta(x + O(x*x^n)) - 1)))} \\ Andrew Howroyd, Oct 26 2018
Comments