A089460 Triangle, read by rows, of coefficients for the second iteration of the hyperbinomial transform.
1, 2, 1, 8, 4, 1, 50, 24, 6, 1, 432, 200, 48, 8, 1, 4802, 2160, 500, 80, 10, 1, 65536, 28812, 6480, 1000, 120, 12, 1, 1062882, 458752, 100842, 15120, 1750, 168, 14, 1, 20000000, 8503056, 1835008, 268912, 30240, 2800, 224, 16, 1, 428717762, 180000000, 38263752, 5505024, 605052, 54432, 4200, 288, 18, 1
Offset: 0
Examples
Rows begin: {1}, {2,1}, {8,4,1}, {50,24,6,1}, {432,200,48,8,1}, {4802,2160,500,80,10,1}, {65536,28812,6480,1000,120,12,1}, {1062882,458752,100842,15120,1750,168,14,1},..
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Programs
-
Mathematica
Join[{1}, Table[Binomial[n, k]*2*(n - k + 2)^(n - k - 1), {n, 1, 49}, {k, 0, n}]] // Flatten (* G. C. Greubel, Nov 18 2017 *)
-
PARI
for(n=0,10, for(k=0,n, print1(2*(n-k+2)^(n-k-1)*binomial(n,k), ", "))) \\ G. C. Greubel, Nov 18 2017
Formula
T(n, k) = 2*(n-k+2)^(n-k-1)*C(n, k).
E.g.f.: exp(x*y)*(-LambertW(-y)/y)^2.
Note: (-LambertW(-y)/y)^2 = Sum_{n>=0} 2*(n+2)^(n-1)*y^n/n!.
Comments