cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089461 Hyperbinomial transform of A088957. Also the row sums of triangle A089460, which lists the coefficients for the second hyperbinomial transform.

Original entry on oeis.org

1, 3, 13, 81, 689, 7553, 101961, 1639529, 30640257, 653150529, 15649353929, 416495026841, 12193949444193, 389572905351425, 13488730646528265, 503205102139969977, 20123584054543823105, 858863606297804378753, 38967500492977755457161, 1872974608860684814735385
Offset: 0

Views

Author

Paul D. Hanna, Nov 05 2003

Keywords

Comments

a(n) is also the number of subtrees of the complete graph K_{n+1} which contain a fixed edge. For n=2, the a(2)=3 solutions are the 3 subtrees of complete graph K_3 which contain a fixed edge (i.e. the edge itself and 2 copies of K_{1,2}). - Kellie J. MacPhee, Jul 25 2013

Crossrefs

Cf. A088957, A089460 (triangle).
Column k=2 of A144303. - Alois P. Heinz, Oct 30 2012

Programs

  • Maple
    a:= n-> add(2*(n-j+2)^(n-j-1)*binomial(n,j), j=0..n):
    seq (a(n), n=0..20);  # Alois P. Heinz, Oct 30 2012
  • Mathematica
    CoefficientList[Series[E^x*(-LambertW[-x]/x)^2, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jul 08 2013 *)
  • PARI
    x='x+O('x^50); Vec(serlaplace(exp(x)*(-lambertw(-x)/x)^2)) \\ G. C. Greubel, Nov 16 2017

Formula

a(n) = Sum_{k=0..n} 2*(n-k+2)^(n-k-1)*C(n, k).
E.g.f.: exp(x)*(-LambertW(-x)/x)^2.
a(n) ~ 2*exp(2+exp(-1))*n^(n-1). - Vaclav Kotesovec, Jul 08 2013