cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089464 Hyperbinomial transform of A089461. Also the row sums of triangle A089463, which lists the coefficients for the third hyperbinomial transform.

Original entry on oeis.org

1, 4, 22, 163, 1564, 18679, 268714, 4538209, 88188280, 1940666635, 47744244286, 1299383450941, 38777402351476, 1259552677645903, 44247546748659130, 1671904534990870369, 67624237153933934704, 2915628368081840175379, 133499617770334938670198
Offset: 0

Views

Author

Paul D. Hanna, Nov 05 2003

Keywords

Comments

a(n) is also the number of subtrees of the complete graph K_{n+2} which contain 2 fixed adjacent edges (i.e. a fixed K_{1,2}). For n=2, the a(2)=4 solutions are the 4 subtrees of K_4 which contain 2 fixed adjacent edges (i.e. those 2 edges, 1 copy of K_{1,3}, and 2 copies of P_4). - Kellie J. MacPhee, Jul 25 2013

Crossrefs

Cf. A089461, A089463 (triangle).
Column k=3 of A144303.

Programs

  • Maple
    a:= n-> add(3*(n-j+3)^(n-j-1)*binomial(n,j), j=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Oct 30 2012
  • Mathematica
    Table[Sum[3(n-k+3)^(n-k-1) Binomial[n,k],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Dec 04 2011 *)
    CoefficientList[Series[E^x*(-LambertW[-x]/x)^3, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jul 08 2013 *)
  • PARI
    x='x+O('x^50); Vec(serlaplace(exp(x)*(-lambertw(-x)/x)^3)) \\ G. C. Greubel, Nov 16 2017

Formula

a(n) = Sum_{k=0..n} 3*(n-k+3)^(n-k-1)*C(n, k).
E.g.f.: exp(x)*(-LambertW(-x)/x)^3.
a(n) ~ 3*exp(3+exp(-1))*n^(n-1). - Vaclav Kotesovec, Jul 08 2013