A089464 Hyperbinomial transform of A089461. Also the row sums of triangle A089463, which lists the coefficients for the third hyperbinomial transform.
1, 4, 22, 163, 1564, 18679, 268714, 4538209, 88188280, 1940666635, 47744244286, 1299383450941, 38777402351476, 1259552677645903, 44247546748659130, 1671904534990870369, 67624237153933934704, 2915628368081840175379, 133499617770334938670198
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..150
Programs
-
Maple
a:= n-> add(3*(n-j+3)^(n-j-1)*binomial(n,j), j=0..n): seq(a(n), n=0..20); # Alois P. Heinz, Oct 30 2012
-
Mathematica
Table[Sum[3(n-k+3)^(n-k-1) Binomial[n,k],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Dec 04 2011 *) CoefficientList[Series[E^x*(-LambertW[-x]/x)^3, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jul 08 2013 *)
-
PARI
x='x+O('x^50); Vec(serlaplace(exp(x)*(-lambertw(-x)/x)^3)) \\ G. C. Greubel, Nov 16 2017
Formula
a(n) = Sum_{k=0..n} 3*(n-k+3)^(n-k-1)*C(n, k).
E.g.f.: exp(x)*(-LambertW(-x)/x)^3.
a(n) ~ 3*exp(3+exp(-1))*n^(n-1). - Vaclav Kotesovec, Jul 08 2013
Comments