cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089467 Hyperbinomial transform of A089466 and also the inverse hyperbinomial transform of A089468.

Original entry on oeis.org

1, 2, 8, 52, 478, 5706, 83824, 1461944, 29510268, 676549450, 17361810016, 492999348348, 15345359136232, 519525230896322, 19005788951346240, 747102849650454256, 31404054519248544016, 1405608808807797838866, 66741852193123060505728, 3350816586986433907218500, 177352811048578736727396576
Offset: 0

Views

Author

Paul D. Hanna, Nov 08 2003

Keywords

Comments

See A088956 for the definition of the hyperbinomial transform.

Crossrefs

Programs

  • Mathematica
    Flatten[{1, Table[Sum[Sum[Binomial[m, j] * Binomial[n, n-m-j] * n^(n-m-j) * (m+j)! / (-2)^j / m!, {j,0,m}], {m,0,n}], {n,1,20}]}] (* Vaclav Kotesovec, Oct 11 2020 *)
  • PARI
    a(n)=if(n<0,0,sum(m=0,n,sum(j=0,m,binomial(m,j)*binomial(n,n-m-j)*n^(n-m-j)*(m+j)!/(-2)^j)/m!))

Formula

a(n) = Sum_{k=0..n} (n-k+1)^(n-k-1)*C(n, k)*A089466(k).
a(n) = Sum_{k=0..n} -(n-k-1)^(n-k-1)*C(n, k)*A089468(k).
a(n) = Sum_{m=0..n} (Sum_{j=0..m} C(m, j)*C(n, n-m-j)*n^(n-m-j)*(m+j)!/(-2)^j)/m!.
a(n) ~ exp(1/2) * n^n. - Vaclav Kotesovec, Oct 11 2020

Extensions

More terms from Michel Marcus, Jan 12 2025