cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089468 Hyperbinomial transform of A089467 and also the 2nd hyperbinomial transform of A089466.

Original entry on oeis.org

1, 3, 15, 110, 1083, 13482, 203569, 3618540, 74058105, 1715620148, 44384718879, 1268498827752, 39692276983555, 1349678904881400, 49556966130059553, 1954156038072106448, 82363978221026323761, 3695194039210436996400
Offset: 0

Views

Author

Paul D. Hanna, Nov 08 2003

Keywords

Comments

See A088956 for the definition of the hyperbinomial transform.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(LambertW[-x]^2*E^(-1/2*LambertW[-x]^2))/(x^2*(1+LambertW[-x])), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jul 09 2013 *)
  • PARI
    a(n)=if(n<0,0,sum(m=0,n,sum(j=0,m,binomial(m,j)*binomial(n,n-m-j)*(n+1)^(n-m-j)*(m+j)!/(-2)^j)/m!))

Formula

a(n) = Sum_{k=0..n} (n-k+1)^(n-k-1)*C(n, k)*A089467(k).
a(n) = Sum_{k=0..n} 2*(n-k+2)^(n-k-1)*C(n, k)*A089466(k).
a(n) = Sum_{m=0..n} (Sum_{j=0..m} C(m, j)*C(n, n-m-j)*(n+1)^(n-m-j)*(m+j)!/(-2)^j)/m!.
E.g.f.: (LambertW(-x)^2*exp(-1/2*LambertW(-x)^2))/(x^2*(1+LambertW(-x))). - Vladeta Jovovic, Oct 26 2004
a(n) ~ exp(3/2)*n^n. - Vaclav Kotesovec, Jul 09 2013