cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A089467 Hyperbinomial transform of A089466 and also the inverse hyperbinomial transform of A089468.

Original entry on oeis.org

1, 2, 8, 52, 478, 5706, 83824, 1461944, 29510268, 676549450, 17361810016, 492999348348, 15345359136232, 519525230896322, 19005788951346240, 747102849650454256, 31404054519248544016, 1405608808807797838866, 66741852193123060505728, 3350816586986433907218500, 177352811048578736727396576
Offset: 0

Views

Author

Paul D. Hanna, Nov 08 2003

Keywords

Comments

See A088956 for the definition of the hyperbinomial transform.

Crossrefs

Programs

  • Mathematica
    Flatten[{1, Table[Sum[Sum[Binomial[m, j] * Binomial[n, n-m-j] * n^(n-m-j) * (m+j)! / (-2)^j / m!, {j,0,m}], {m,0,n}], {n,1,20}]}] (* Vaclav Kotesovec, Oct 11 2020 *)
  • PARI
    a(n)=if(n<0,0,sum(m=0,n,sum(j=0,m,binomial(m,j)*binomial(n,n-m-j)*n^(n-m-j)*(m+j)!/(-2)^j)/m!))

Formula

a(n) = Sum_{k=0..n} (n-k+1)^(n-k-1)*C(n, k)*A089466(k).
a(n) = Sum_{k=0..n} -(n-k-1)^(n-k-1)*C(n, k)*A089468(k).
a(n) = Sum_{m=0..n} (Sum_{j=0..m} C(m, j)*C(n, n-m-j)*n^(n-m-j)*(m+j)!/(-2)^j)/m!.
a(n) ~ exp(1/2) * n^n. - Vaclav Kotesovec, Oct 11 2020

Extensions

More terms from Michel Marcus, Jan 12 2025

A334014 Array read by antidiagonals: T(n,k) is the number of functions f: X->Y, where X is a subset of Y, |X| = n, |Y| = n+k, such that for every x in X, f(f(x)) != x.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 3, 2, 1, 3, 8, 18, 30, 1, 4, 15, 52, 163, 444, 1, 5, 24, 110, 478, 1950, 7360, 1, 6, 35, 198, 1083, 5706, 28821, 138690, 1, 7, 48, 322, 2110, 13482, 83824, 505876, 2954364, 1, 8, 63, 488, 3715, 27768, 203569, 1461944, 10270569, 70469000, 1, 9, 80, 702, 6078, 51894, 436656, 3618540, 29510268, 236644092, 1864204416, 1, 10, 99, 970, 9403, 90150, 854485, 8003950, 74058105, 676549450, 6098971555, 54224221050
Offset: 0

Views

Author

Mason C. Hart, Apr 14 2020

Keywords

Comments

Comes up in the study of the Zen Stare game (see description at A134362).
T(k,n-k)*binomial(n,k)*(n-k-1)!! is the number of different possible Zen Stare rounds with n starting players and k winners.

Examples

			Array begins:
=======================================================
n\k |    0     1     2      3      4      5       6
----+--------------------------------------------------
  0 |    1     1     1      1      1      1       1 ...
  1 |    0     1     2      3      4      5       6 ...
  2 |    0     3     8     15     24     35      48 ...
  3 |    2    18    52    110    198    322     488 ...
  4 |   30   163   478   1083   2110   3715    6078 ...
  5 |  444  1950  5706  13482  27768  51894   90150 ...
  6 | 7360 28821 83824 203569 436656 854485 1557376 ...
  ...
T(2,2) = 8; This because given X = {A,B}, Y = {A,B,C,D}. The only functions f: X->Y that meet the requirement are:
f(A) = C, f(B) = C
f(A) = D, f(B) = D
f(A) = D, f(B) = C
f(A) = C, f(B) = D
f(A) = B, f(B) = C
f(A) = B, f(B) = D
f(A) = C, f(B) = A
f(A) = D, f(B) = A
		

Crossrefs

Rows n=0..3 are A000012, A001477, A005563, A058794.
Columns k=0..4 are A134362, A089466, A089467, A089468, A220690(n+2).

Programs

  • PARI
    T(n,k)={my(w=-lambertw(-x + O(x^max(4,1+n)))); n!*polcoef(exp((k-1)*w - w^2/2)/(1-w), n)} \\ Andrew Howroyd, Apr 15 2020

Formula

T(n,k) = Sum_{i=0..n} k^(n-i)*binomial(n,i)*T(i,n-i); This means that with a constant n, T(n,k) is a polynomial of k.
T(n,0) = A134362(n).
T(0,k) = 1.
For odd n, Sum_{k=1..(n+1)/2} T(2*k-1,n-2*k+1)*binomial(n,2*k-1)*(n-2*k)!! = (n-1)^n.
E.g.f. of k-th column: exp((k-1)*W(x) - W(x)^2/2)/(1-W(x)) where W(x) is the e.g.f. of A000169. - Andrew Howroyd, Apr 15 2020
Showing 1-2 of 2 results.