cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A125824 Denominator of n!/3^n.

Original entry on oeis.org

1, 3, 9, 9, 27, 81, 81, 243, 729, 243, 729, 2187, 2187, 6561, 19683, 19683, 59049, 177147, 59049, 177147, 531441, 531441, 1594323, 4782969, 4782969, 14348907, 43046721, 4782969, 14348907, 43046721, 43046721, 129140163, 387420489
Offset: 0

Views

Author

Benoit Cloitre, Feb 06 2007

Keywords

Crossrefs

A212307 (numerators).

Programs

  • GAP
    List([0..40], n-> DenominatorRat(Factorial(n)/3^n) ); # G. C. Greubel, Aug 03 2019
  • Magma
    [Denominator(Factorial(n)/3^n): n in [0..40]]; // G. C. Greubel, Aug 03 2019
    
  • Mathematica
    Table[Denominator[n!/3^n], {n,0,40}] (* G. C. Greubel, Aug 03 2019 *)
  • PARI
    a(n)=denominator(n!/3^n)
    
  • Sage
    [denominator(factorial(n)/3^n) for n in (0..40)] # G. C. Greubel, Aug 03 2019
    

Formula

a(0)=1, a(3n+2) = 3^(n+2)*a(n), a(3n+1) = 3^(n+1)*a(n), a(3n) = 3^n*a(n).
a(n) = 3^A089792(n).
a(n) = denominator((1/(2*Pi)) * Integral_{t=0..2*Pi} exp(i*3*t)(-((Pi-t)/i)^n), i=sqrt(-1). - Paul Barry, Apr 02 2007

A211898 G.f.: exp( Sum_{n>=1} (2^n - (-1)^n)^n * x^n/n ).

Original entry on oeis.org

1, 3, 9, 261, 13419, 7867287, 10444212819, 84955235950827, 2235017786095822257, 273416315791427558035965, 125533366255776787874473759857, 242979442003484538229530424638338553, 1852958949086213206247388599213928431454549
Offset: 0

Views

Author

Paul D. Hanna, Apr 25 2012

Keywords

Comments

CONJECTURE: the highest power of 3 dividing a(n) equals 3^A089792(n) for n>=0; that is, n!*a(n)/3^n is an integer not divisible by 3 for n>=0.
Given g.f. A(x), note that A(x)^(1/3) is not an integer series.

Examples

			G.f.: A(x) = 1 + 3*x + 9*x^2 + 261*x^3 + 13419*x^4 + 7867287*x^5 +...
such that
log(A(x)) = 3*x + 3^2*x^2/2 + 9^3*x^3/3 + 15^4*x^4/4 + 33^5*x^5/5 + 63^6*x^6/6 + 129^7*x^7/7 + 255^8*x^8/8 +...+ (2^n - (-1)^n)^n*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(k=1, n, (2^k-(-1)^k)^k*x^k/k)+x*O(x^n)), n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) == 3 (mod 6) for n>0.

A353068 Irregular triangle read by rows: T(n,k) = n - multiplicity of prime(k) as a divisor of n!.

Original entry on oeis.org

1, 2, 2, 1, 3, 2, 4, 4, 2, 4, 5, 3, 5, 6, 6, 1, 6, 7, 7, 2, 5, 8, 8, 2, 6, 8, 9, 3, 7, 9, 10, 10, 2, 7, 10, 11, 11, 3, 8, 11, 12, 12, 12, 3, 9, 12, 12, 13, 13, 4, 9, 12, 13, 14, 14, 1, 10, 13, 14, 15, 15, 2, 11, 14, 15, 16, 16, 16, 2, 10, 15, 16, 17, 17, 17, 3, 11, 16, 17, 18, 18, 18, 18
Offset: 2

Views

Author

Michel Marcus, Apr 21 2022

Keywords

Comments

This is the "s" in the American Mathematical Monthly problem.

Examples

			First few rows are:
  1;
  2, 2;
  1, 3;
  2, 4, 4;
  2, 4, 5;
  3, 5, 6, 6;
  1, 6, 7, 7;
  2, 5, 8, 8;
  2, 6, 8, 9;
  3, 7, 9, 10, 10;
  2, 7, 10, 11, 11;
  ...
		

Crossrefs

Cf. A115627, A000120 (column 1), A089792 (column 2).

Programs

  • Mathematica
    T[n_, k_] := n - IntegerExponent[n!, Prime[k]]; Table[T[n, k], {n, 2, 19}, {k, 1, PrimePi[n]}] // Flatten (* Amiram Eldar, Apr 21 2022 *)
  • PARI
    row(n) = vector(primepi(n), k, n-valuation(n!, prime(k)));

Formula

T(n,k) = n - A115627(n, k).
Showing 1-3 of 3 results.