A089951 Numbers having the same leading decimal digits as their squares.
0, 1, 10, 11, 12, 13, 14, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 895
Offset: 1
Examples
895*895 = 801025, therefore 895 is a term: a(55)=895.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
a089951 n = a089951_list !! (n-1) a089951_list = [x | x <- [0..], a000030 x == a000030 (x ^ 2)] -- Reinhard Zumkeller, Apr 01 2015
-
Maple
F:= proc(d) $10^d .. floor(sqrt(2)*10^d), $ ceil(sqrt(80)*10^d) .. 9*10^d - 1, $ ceil(sqrt(90)*10^d) .. 10^(d+1)-1 end proc: 0, F(0), F(1), F(2), F(3); # Robert Israel, Mar 18 2015
-
Mathematica
d[n_] := IntegerDigits[n]; Select[Range[895], First[d[#]] == First[d[#^2]] &] (* Jayanta Basu, Jun 03 2013 *)
-
PARI
a(n)={my(v = [1, sqrt(80), sqrt(90)], w=[(k)->10^k * ((sqrt(2) - 1))\1 + 1, (k)->9 * 10^k - ceil(sqrt(80) * 10^k), (k)->10 * 10^k - ceil(sqrt(90) * 10^k)],i = 1,k = 0); if(n==1, 0, n--; while(n>w[i](k), n-=w[i](k); i++; if(i == 4, i = 1; k++)); ceil(v[i]*10^k)+n-1)} \\ David A. Corneth, Feb 26 2015
-
PARI
isok(n) = (n == 0) || (digits(n)[1] == digits(n^2)[1]); \\ Michel Marcus, Mar 18 2015
Formula
A number n is in the sequence iff n = 0 or n/10^floor(log_10(n)) lies in one of the half-open intervals [1, sqrt(2)), [sqrt(80), 9) or [sqrt(90), 10). - David W. Wilson, May 29 2008
Comments