cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089958 Number of partitions of n in which every part occurs 2, 3, or 5 times.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 3, 1, 3, 4, 4, 4, 8, 5, 9, 11, 11, 12, 20, 15, 23, 27, 28, 31, 45, 38, 52, 61, 64, 71, 96, 87, 112, 129, 136, 151, 194, 184, 227, 259, 275, 304, 376, 368, 441, 499, 531, 586, 704, 705, 826, 927, 989, 1088, 1280, 1302, 1500, 1672, 1787, 1960, 2267
Offset: 0

Views

Author

Eric W. Weisstein, Nov 16 2003

Keywords

Comments

Also number of partitions of n in which every part is congruent to {2, 3, 6, 9, 10} mod 12. - Vladeta Jovovic, Jan 07 2005

Examples

			a(11) = 4 because we have [4,4,1,1,1], [3,3,3,1,1], [3,3,1,1,1,1,1] and [2,2,2,1,1,1,1,1].
		

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (2.5.5).
  • M. V. Subbarao, Combinatorial proofs of some identities, Proc. Washington State Univ. Conf. Number Theory, 1971, pp. 80-91.

Programs

  • Maple
    g:=product(1+x^(2*j)+x^(3*j)+x^(5*j),j=1..50): gser:=series(g,x=0,63): seq(coeff(gser,x,n),n=0..60); # Emeric Deutsch, Mar 05 2006
  • Mathematica
    nn = 60; CoefficientList[ Series[Product[1 + x^(2 i) + x^(3 i) + x^(5 i), {i, 1, nn}], {x, 0, nn}], x] (* Geoffrey Critzer, May 31 2013 *)
    QP = QPochhammer; s = QP[q^6]*(QP[q^4]/(QP[q^2]*QP[q^3])) + O[q]^70; CoefficientList[s, q] (* Jean-François Alcover, Nov 30 2015, adapted from PARI *)
  • PARI
    {a(n)=local(A); if(n<0,0, A=x*O(x^n); polcoeff( eta(x^4+A) *eta(x^6+A)/eta(x^2+A)/eta(x^3+A), n))} /* Michael Somos, Jan 19 2005 */

Formula

Euler transform of period 12 sequence [0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, ...]. - Vladeta Jovovic, Jan 07 2005
Expansion of q^(-5/24)eta(q^6)eta(q^4)/(eta(q^2)eta(q^3)) in powers of q.
G.f.: Product_{j>=1}(1+x^(2j)+x^(3j)+x^(5j)). - Emeric Deutsch, Mar 05 2006
a(n) ~ 5^(1/4) * exp(Pi*sqrt(5*n/2)/3) / (2^(11/4) * sqrt(3) * n^(3/4)). - Vaclav Kotesovec, Aug 24 2015