A090040 (3*6^n + 2^n)/4.
1, 5, 28, 164, 976, 5840, 35008, 209984, 1259776, 7558400, 45349888, 272098304, 1632587776, 9795522560, 58773127168, 352638746624, 2115832446976, 12694994616320, 76169967566848, 457019805138944, 2742118830309376
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Index entries for linear recurrences with constant coefficients, signature (8,-12).
Crossrefs
Cf. A081335.
Programs
-
Magma
[(3*6^n+2^n)/4: n in [0..30]]; // Vincenzo Librandi, Jun 10 2011
-
Mathematica
LinearRecurrence[{8,-12},{1,5},30] (* Harvey P. Dale, Nov 23 2014 *)
-
PARI
a(n)=(3*6^n+2^n)/4 \\ Charles R Greathouse IV, Oct 07 2015
Formula
G.f.: (1-3*x)/((1-2*x)*(1-6*x)).
E.g.f.: (3*exp(6*x)+exp(2*x))/4 = exp(4*x)*(cosh(2*x)+sinh(2*x)/2).
a(n) = 8*a(n-1) -12*a(n-2), a(0)=1, a(1)=5.
a(n) = (3*6^n+2^n)/4.
a(n)=6*a(n-1)-2^(n-1). - Paul Curtz, Jan 09 2009
Fourth binomial transform of (1, 1, 4, 4, 16, 16, ...). a(n)=sum{k=1..floor(n/2), C(n, 2k)4^(n-k-1)}. - Paul Barry, Nov 22 2003
a(n) = A019590 (mod 4), proof via a(n)=8*a(n-1)-12*a(n-2). - R. J. Mathar, Feb 25 2009
a(n) = Sum_{k, 0<=k<=n} A117317(n,k)*3^k. - Philippe Deléham, Jan 28 2012
Comments