cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090042 a(n) = 2*a(n-1) + 11*a(n-2) for n > 1, a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 13, 37, 217, 841, 4069, 17389, 79537, 350353, 1575613, 7005109, 31341961, 139740121, 624241813, 2785624957, 12437909857, 55517694241, 247852396909, 1106399430469, 4939175226937, 22048744189033, 98428415874373, 439393017828109, 1961498610274321, 8756320416657841
Offset: 0

Views

Author

Paul Barry, Nov 20 2003

Keywords

Comments

Binomial transform of A001021 (powers of 12), with interpolated zeros.
For n > 0, a(n) = term (1,1) in the n-th power of the 2 X 2 matrix [1,3; 4,1]. - Gary W. Adamson, Aug 06 2010
a(n) is the number of compositions of n when there are 1 type of 1 and 12 types of other natural numbers. - Milan Janjic, Aug 13 2010

Crossrefs

Programs

  • GAP
    a := [1, 1];; for n in [3..30] do a[n] := 2*a[n-1]+ 11*a[n-2]; od; a; # Muniru A Asiru, Feb 18 2018
    
  • Magma
    I:=[1,1]; [n le 2 select I[n] else 2*Self(n-1) +11*Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 02 2019
    
  • Maple
    a := proc(n) option remember: if n=0 then 1 elif n=1 then 1 elif n>=2 then 2*procname(n-1) + 11*procname(n-2) fi; end:
    seq(a(n), n=0..25); # Muniru A Asiru, Feb 18 2018
  • Mathematica
    a[n_]:= Simplify[((1+Sqrt[12])^n +(1-Sqrt[12])^n)/2]; Array[a, 30, 0] (* or *)
    CoefficientList[Series[(x-1)/(11x^2+2x-1), {x,0,30}], x] (* or *)
    Table[ MatrixPower[{{1, 2}, {6, 1}}, n][[1, 1]], {n, 0, 30}] (* Robert G. Wilson v, Sep 18 2013 and modified per Wolfdieter Lang Feb 17 2018 *)
    LinearRecurrence[{2, 11}, {1, 1}, 30] (* Ray Chandler, Aug 01 2015 *)
  • PARI
    x='x+O('x^30); Vec((1-x)/(1-2*x-11*x^2)) \\ Altug Alkan, Feb 17 2018
    
  • Sage
    ((1-x)/(1-2*x-11*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Aug 02 2019

Formula

E.g.f.: exp(x)*cosh(2*sqrt(3)*x).
a(n) = ((1 + 2*sqrt(3))^n + (1 - 2*sqrt(3))^n)/2.
a(n) = Sum_{k=0..n} A098158(n,k)*12^(n-k). - Philippe Deléham, Dec 26 2007
If p[1]=1, and p[i]=12, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det A. - Milan Janjic, Apr 29 2010
From Wolfdieter Lang, Feb 17 2018: (Start)
G.f.: (1-x)/(1 - 2*x - 11*x^2). (See the Mathematica program.)
a(n) = b(n+1) - b(n), with b(n) = A015520(n). This leads to the Binet-de Moivre type formula given in the Mathematica program.
a(n) = (i*sqrt(11))^n*(S(n,-2*i/sqrt(11)) + (i/sqrt(11))*S(n-1,-2*i/sqrt(11))), n >= 0, with Chebyshev S polynomials (coefficients in A049310), with S(-2, x) = -1, S(-1, x) = 0 and i = sqrt(-1). Via Cayley-Hamilton. See the Gary W. Adamson comment above or the Mathematica program of Robert G. Wilson v with another matrix. (End)
From Peter Bala, Jan 07 2022: (Start)
a(n) = [x^n] (x + sqrt(1 + 12*x^2))^n.
The Gauss congruences a(n*p^k) == a(n^p^(k-1)) (mod p^k) hold for prime p and positive integers n and k.
O.g.f.: 1 + x*d/dx(log(B(x))), where B(x) = 1/sqrt(1 - 2*x - 11*x^2) is the o.g.f. of A084603. (End)