A090306 a(n) = 17*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 17.
2, 17, 291, 4964, 84679, 1444507, 24641298, 420346573, 7170533039, 122319408236, 2086600473051, 35594527450103, 607193567124802, 10357885168571737, 176691241432844331, 3014108989526925364, 51416544063390575519
Offset: 0
Examples
a(4) = 17*a(3) + a(2) = 17*4964 + 291=((17+sqrt(293))/2)^4 + ((17-sqrt(293))/2)^4 = 84678.999988190 + 0.000011809 = 84679.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Tanya Khovanova, Recursive Sequences
- Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)
- Index entries for linear recurrences with constant coefficients, signature (17,1).
Crossrefs
Cf. A005074.
Lucas polynomials Lucas(n,m): A000032 (m=1), A002203 (m=2), A006497 (m=3), A014448 (m=4), A087130 (m=5), A085447 (m=6), A086902 (m=7), A086594 (m=8), A087798 (m=9), A086927 (m=10), A001946 (m=11), A086928 (m=12), A088316 (m=13), A090300 (m=14), A090301 (m=15), A090305 (m=16), this sequence (m=17), A090307 (m=18), A090308 (m=19), A090309 (m=20), A090310 (m=21), A090313 (m=22), A090314 (m=23), A090316 (m=24), A330767 (m=25).
Programs
-
GAP
m:=17;; a:=[2,m];; for n in [3..20] do a[n]:=m*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 30 2019
-
Magma
m:=17; I:=[2,m]; [n le 2 select I[n] else m*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 30 2019
-
Maple
seq(simplify(2*(-I)^n*ChebyshevT(n, 17*I/2)), n = 0..20); # G. C. Greubel, Dec 30 2019
-
Mathematica
LinearRecurrence[{17,1},{2,17},30] (* Harvey P. Dale, Jan 24 2018 *) LucasL[Range[20]-1, 17] (* G. C. Greubel, Dec 30 2019 *)
-
PARI
vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 17*I/2) ) \\ G. C. Greubel, Dec 30 2019
-
Sage
[2*(-I)^n*chebyshev_T(n, 17*I/2) for n in (0..20)] # G. C. Greubel, Dec 30 2019
Formula
a(n) = 17*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 17.
a(n) = ((17+sqrt(293))/2)^n + ((17-sqrt(293))/2)^n.
(a(n))^2 = a(2n) - 2 if n=1, 3, 5, ...
(a(n))^2 = a(2n) + 2 if n=2, 4, 6, ...
G.f.: (2-17*x)/(1-17*x-x^2). - Philippe Deléham, Nov 02 2008
From Johannes W. Meijer, Jun 12 2010: (Start)
a(2n+1) = 17*A098249(n).
a(n) = Lucas(n, 17) = 2*(-i)^n * ChebyshevT(n, 17*i/2). - G. C. Greubel, Dec 30 2019
E.g.f.: 2*exp(17*x/2)*cosh(sqrt(293)*x/2). - Stefano Spezia, Dec 31 2019
Extensions
More terms from Ray Chandler, Feb 14 2004
Comments