cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090443 a(n) = (n+2)! * (n+1)! * n! / 2.

Original entry on oeis.org

1, 6, 144, 8640, 1036800, 217728000, 73156608000, 36870930432000, 26547069911040000, 26281599211929600000, 34691710959747072000000, 59530976006925975552000000, 130015651599126330605568000000, 354942728865614882553200640000000, 1192607568988466005378754150400000000
Offset: 0

Views

Author

Wolfdieter Lang, Dec 23 2003

Keywords

Crossrefs

Programs

  • Maple
    a:=n->mul(j^3-j, j=2..n): seq(a(n), n=1..13); # Zerinvary Lajos, May 08 2008
  • Mathematica
    (Times@@#)/2&/@Partition[Range[0,20]!,3,1] (* Harvey P. Dale, Dec 03 2017 *)
  • Python
    from math import factorial
    def A090443(n): return factorial(n)**3*(n+2)*(n+1)**2>>1 # Chai Wah Wu, Apr 22 2024

Formula

Fourth column (m=3) of triangle A090441.
From Karol A. Penson Jul 25 2013: (Start)
G.f. of hypergeometric type:
Sum_{n>=0} a(n)*z^n/(n!)^3 = (1+2*z)/(1-z)^4;
integral representation as n-th moment of a positive function w(x) on a positive halfaxis (solution of the Stieltjes moment problem), in Maple notation:
a(n) = int(x^n*w(x),x=0..infinity), n>=0 where w(x)=MeijerG([[],[]],[[2,1,0]],[]],x)/2, w(0)=1/2, limit(w(x),x=infinity)=0. w(x) is monotonically decreasing over (0,infinity). The Meijer G function above cannot be represented by any other known special function.
This solution of the Stieltjes moment problem is not unique.
Asymptotics: a(n)->(1/32)*Pi^(3/2)*sqrt(2)*(32*n^2+136*n+193)*exp(-3*n)*(n)^(5/2+3*n), for n->infinity. (End)