A173882 Triangle T(n, k) = A090443(n-1)/(A090443(k-1)*A090443(n-k-1)) read by rows.
1, 1, 1, 1, 6, 1, 1, 24, 24, 1, 1, 60, 240, 60, 1, 1, 120, 1200, 1200, 120, 1, 1, 210, 4200, 10500, 4200, 210, 1, 1, 336, 11760, 58800, 58800, 11760, 336, 1, 1, 504, 28224, 246960, 493920, 246960, 28224, 504, 1, 1, 720, 60480, 846720, 2963520, 2963520, 846720, 60480, 720, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 6, 1; 1, 24, 24, 1; 1, 60, 240, 60, 1; 1, 120, 1200, 1200, 120, 1; 1, 210, 4200, 10500, 4200, 210, 1; 1, 336, 11760, 58800, 58800, 11760, 336, 1; 1, 504, 28224, 246960, 493920, 246960, 28224, 504, 1; 1, 720, 60480, 846720, 2963520, 2963520, 846720, 60480, 720, 1; 1, 990, 118800, 2494800, 13970880, 24449040, 13970880, 2494800, 118800, 990, 1; ...
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Cf. A056939.
Programs
-
Magma
T:= func< n,k | k eq 0 or k eq n select 1 else 2*Binomial(n-1,k-1)*Binomial(n,k)*Binomial(n+1,k+1)*(n-k)/(n-k+1) >; [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 17 2021
-
Maple
A090443 := proc(n) (n+2)!*(n+1)!*n!/2 ; end proc: A173882 := proc(n,m) if m=0 or m= n then 1; else A090443(n-1)/A090443(m-1)/A090443(n-m-1) ; end if; end proc: seq(seq(A173882(n,m),m=0..n),n=0..5) ; # R. J. Mathar, Mar 19 2011
-
Mathematica
T[n_,k_]:= If[k==0||k==n, 1, 2*Binomial[n-1,k-1]*Binomial[n,k]*Binomial[n+1,k+1]*(n-k)/(n-k+1)]; Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Apr 17 2021 *)
-
Sage
def T(n,k): return 1 if (k==0 or k==n) else 2*binomial(n-1,k-1)*binomial(n,k)*binomial(n+1,k+1)*(n-k)/(n-k+1) flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 17 2021
Formula
T(n, k) = 2*binomial(n-1,k-1)*binomial(n,k)*binomial(n+1,k+1)*(n-k)/(n-k+1) with T(n, 0) = T(n, n) = 1.
T(n, k) = c(n)/(c(k)*c(n-k)) where c(n) = Product_{j=2..n} (j-1)*j*(j+1) = (n-1)!*n!*(n+1)!/2 and c(0) = c(1) = 1.
Comments