A090466 Regular figurative or polygonal numbers of order greater than 2.
6, 9, 10, 12, 15, 16, 18, 21, 22, 24, 25, 27, 28, 30, 33, 34, 35, 36, 39, 40, 42, 45, 46, 48, 49, 51, 52, 54, 55, 57, 58, 60, 63, 64, 65, 66, 69, 70, 72, 75, 76, 78, 81, 82, 84, 85, 87, 88, 90, 91, 92, 93, 94, 95, 96, 99, 100, 102, 105, 106, 108, 111, 112, 114, 115, 117, 118
Offset: 1
References
- Albert H. Beiler, Recreations In The Theory Of Numbers, The Queen Of Mathematics Entertains, Dover, NY, 1964, pp. 185-199.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..10000 (first 1000 terms are from T. D. Noe)
- Eric Weisstein's World of Mathematics, Figurate Number
- Index to sequences related to polygonal numbers
Crossrefs
Programs
-
Maple
isA090466 := proc(n) local nsearch,ksearch; for nsearch from 3 do if A057145(nsearch,3) > n then return false; end if; for ksearch from 3 do if A057145(nsearch,ksearch) = n then return true; elif A057145(nsearch,ksearch) > n then break; end if; end do: end do: end proc: for n from 1 to 1000 do if isA090466(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Jul 28 2016
-
Mathematica
Take[Union[Flatten[Table[1+k*n (n-1)/2-(n-1)^2,{n,3,100},{k,3,40}]]],67] (* corrected by Ant King, Sep 19 2011 *) mx = 150; n = k = 3; lst = {}; While[n < Floor[mx/3]+2, a = PolygonalNumber[n, k]; If[a < mx+1, AppendTo[ lst, a], (n++; k = 2)]; k++]; lst = Union@ lst (* Robert G. Wilson v, May 29 2014 and updated Jul 23 2018; PolygonalNumber requires version 10.4 or higher *)
-
PARI
list(lim)=my(v=List()); lim\=1; for(n=3,sqrtint(8*lim+1)\2, for(k=3,2*(lim-2*n+n^2)\n\(n-1), listput(v, 1+k*n*(n-1)/2-(n-1)^2))); Set(v); \\ Charles R Greathouse IV, Jan 19 2017
-
PARI
is(n)=for(s=3,n\3+1,ispolygonal(n,s)&&return(s)); \\ M. F. Hasler, Jan 19 2017
-
PARI
isA090466(m) = my(v=divisors(2*m)); for(i=3, #v, my(d=v[i]); if(d==m, return(0)); if((2*m/d - 2)%(d - 1)==0, return(1))); 0 \\ Jianing Song, Mar 14 2021
Formula
Integer k is in this sequence iff A176774(k) < k. - Max Alekseyev, Apr 24 2018
Extensions
Verified by Don Reble, Mar 12 2006
Comments