cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090585 Numerator of (Sum_{k=1..n} k) / (Product_{k=1..n} k).

Original entry on oeis.org

1, 3, 1, 5, 1, 7, 1, 1, 1, 11, 1, 13, 1, 1, 1, 17, 1, 19, 1, 1, 1, 23, 1, 1, 1, 1, 1, 29, 1, 31, 1, 1, 1, 1, 1, 37, 1, 1, 1, 41, 1, 43, 1, 1, 1, 47, 1, 1, 1, 1, 1, 53, 1, 1, 1, 1, 1, 59, 1, 61, 1, 1, 1, 1, 1, 67, 1, 1, 1, 71, 1, 73, 1, 1, 1, 1, 1, 79, 1, 1, 1, 83, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 03 2003

Keywords

Comments

If the offset is set to 2 then [a(n) <> 1] is the indicator function of the odd primes ([] Iverson bracket). [Peter Luschny, Jul 05 2009]

Examples

			For n=5, (1+2+3+4+5)/(1*2*3*4*5) = 15/120 = 1/8, so a(5) = 1. For n=6, (1+2+3+4+5+6)/(1*2*3*4*5*6) = 21/720 = 7/240, so a(6) = 7. - _Michael B. Porter_, Jul 02 2016
		

Crossrefs

Denominator = A090586.

Programs

  • Maple
    a := n -> denom(2*n!/(n+1)); # Peter Luschny, Jul 05 2009
  • Mathematica
    With[{nn=100},Numerator[Accumulate[Range[nn]]/Rest[FoldList[Times,1,Range[nn]]]]] (* Harvey P. Dale, Sep 09 2014 *)
  • PARI
    for(n=1,100,print1(gcd(n*(n+1)/2,round(factorial(n))+1),", ")); \\ Jaume Oliver Lafont, Jan 23 2009

Formula

a(n) = A000217(n) / A069268(n).
a(n) = A089026(n+1) for n>1.
Also for n>1, a(n) is a numerator of determinant of (n-1) X (n-1) matrix with M(i,j) = (i+2)/(i+1) if i=j, otherwise 1. E.g., a(2) = Numerator[Det[{{3/2}}]] = Numerator[3/2] = 3. a(3) = Numerator[Det[{{3/2,1},{1,4/3}}]] = Numerator[1/1] = 1. a(4) = Numerator[Det[{{3/2,1,1},{1,4/3,1},{1,1,5/4}}]] = Numerator[5/12] = 5. - Alexander Adamchuk, May 26 2006
a(n) = gcd(n*(n+1)/2, n!+1). [Jaume Oliver Lafont, Jan 23 2009]