A090588 Number of labeled idempotent groupoids.
1, 1, 4, 729, 16777216, 95367431640625, 221073919720733357899776, 311973482284542371301330321821976049, 374144419156711147060143317175368453031918731001856, 507528786056415600719754159741696356908742250191663887263627442114881
Offset: 0
Keywords
Links
Programs
-
Magma
[n^(n^2 - n): n in [0..10]]; // Vincenzo Librandi, Aug 08 2015
-
Maple
a:=n->mul(mul(sum(1, j=1..n), k=1..n), m=1..n-1): seq(a(n), n=0..8); # Zerinvary Lajos, Dec 31 2008
-
Mathematica
Join[{1},Table[n^(n^2-n),{n,10}]] (* Harvey P. Dale, Sep 16 2013 *)
-
PARI
a(n) = n^(n^2-n); \\ Joerg Arndt, Nov 04 2013
-
Ruby
def a(n) ids =* (0..n-1) return (ids.product(ids)).reduce(1){ |accum,x| (x[0] == x[1]) ? accum : accum*ids.length} end # Chad Brewbaker, Nov 03 2013
Formula
a(n) = n^(n^2 - n).
Extensions
One additional term from Harvey P. Dale, Sep 16 2013