cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A188549 Numbers k such that 8*k^2+1 is a prime.

Original entry on oeis.org

3, 12, 15, 18, 21, 33, 36, 48, 51, 66, 78, 81, 93, 102, 114, 120, 132, 150, 153, 162, 180, 183, 213, 225, 228, 231, 234, 237, 243, 246, 252, 279, 282, 285, 294, 303, 318, 324, 333, 375, 378, 381, 384, 393, 396, 399, 417, 432, 450, 459, 468, 480, 489, 495, 510
Offset: 1

Views

Author

Vincenzo Librandi, Apr 04 2011

Keywords

Comments

Half of the even terms of A089001. - R. J. Mathar, Apr 09 2011

Crossrefs

Cf. A090685 (Primes of the form 8*n^2 + 1), A089001.

Programs

  • Magma
    [n: n in [1..1800]|IsPrime(8*n^2 + 1)]; // Vincenzo Librandi, Apr 04 2011
  • Mathematica
    Select[Range[600],PrimeQ[8#^2+1]&] (* Harvey P. Dale, Apr 11 2012 *)

A247965 a(n) is the smallest number k such that m*k^2+1 is prime for all m = 1 to n.

Original entry on oeis.org

1, 1, 6, 3240, 113730, 30473520, 3776600100, 16341921960, 3332396388090
Offset: 1

Views

Author

Michel Lagneau, Sep 28 2014

Keywords

Comments

Conjecture : the sequence is infinite.
a(10) > 15466500000000. a(11) > 107669100000000. - Hiroaki Yamanouchi, Oct 01 2014

Examples

			a(3)=6 because 6^2+1 = 37, 2*6^2+1 = 73 and 3*6^2+1 = 109 are prime numbers.
The resulting primes begin like this:
2;
2, 3;
37, 73, 109;
10497601, 20995201, 31492801, 41990401;
... - _Michel Marcus_, Sep 29 2014
		

Crossrefs

Programs

  • Maple
    for n from 1 to 6 do:
      ii:=0:
       for k from 1 to 10^10 while(ii=0) do:
         ind:=0:
           for m from 1 to n do:
             p:=m*k^2+1:
              if type(p,prime) then
               ind:=ind+1:
               fi:
            od:
           if ind=n then
            ii:=1:printf ( "%d %d \n",n,k):
           fi:
        od:
      od:
  • PARI
    a(n)=k=1;while(k,c=0;for(i=1,n,if(!ispseudoprime(i*k^2+1),c++;break));if(!c,return(k));if(c,k++))
    n=1;while(n<10,print1(a(n),", ");n++) \\ Derek Orr, Sep 28 2014

Extensions

a(7)-a(9) from Hiroaki Yamanouchi, Oct 01 2014
Showing 1-2 of 2 results.