A049432
Numbers k such that k! - (k-1)! + 1 is prime.
Original entry on oeis.org
2, 3, 4, 5, 6, 8, 13, 20, 24, 46, 59, 150, 152, 198, 683, 880, 1135, 1907, 6617, 10243, 12016
Offset: 1
Paul Jobling (paul.jobling(AT)whitecross.com)
6! - (6-1)! + 1 = 601 is prime.
A301373
Numbers k such that (k+1)!*k/2 + 1 is prime.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 19, 24, 251, 374, 953, 1104, 1507, 3390, 4443, 5762
Offset: 1
-
Do[ If[ PrimeQ[n(n +1)!/2 +1], Print@ n], {n, 4000}] (* Robert G. Wilson v, Apr 05 2018 *)
-
isok(k) = ispseudoprime((k+1)! * k / 2 + 1);
A346167
Primes p such that p*p! + 1 is also prime.
Original entry on oeis.org
2, 3, 5, 7, 19, 23, 149, 151, 197, 37691
Offset: 1
-
select(p -> isprime(p) and isprime(p*factorial(p) + 1), [$2 .. 200]);
-
Select[Range[2, 200], PrimeQ[#] && PrimeQ[#*#! + 1] &]
Select[Prime[Range[100]],PrimeQ[#*#!+1]&] (* Harvey P. Dale, Mar 21 2025 *)
-
a = List(); for(p=2, 200, if(isprime(p) && isprime(p*p!+1), listput(a, p))); a
-
[p for p in range(2, 200) if is_prime(p) and is_prime(p*factorial(p) + 1)]
A346168
Primes p such that p*p! - 1 is prime.
Original entry on oeis.org
2, 3, 5, 7, 11, 397, 599, 2239
Offset: 1
-
select(p -> isprime(p) and isprime(p*factorial(p) - 1), [$2 .. 600])
-
Select[Range[2, 600], PrimeQ[#] && PrimeQ[#*#! - 1] &]
Select[Prime[Range[110]],PrimeQ[# #!-1]&] (* The program generates the first 7 terms of the sequence. *) (* Harvey P. Dale, Feb 12 2025 *)
-
a = List(); for(p=2, 600, if(isprime(p) && isprime(p*p!-1), listput(a, p))); a
-
[p for p in range(2, 600) if is_prime(p) and is_prime(p*factorial(p) - 1)]
A382392
a(n) is the least prime number whose factorial base expansion contains the digit n.
Original entry on oeis.org
2, 2, 5, 19, 97, 601, 4327, 35281, 322571, 3265949, 36288017, 439084817, 5748019201, 80951270459, 1220496076831, 19615115520037, 334764638208037, 6046686277632071, 115242726703104073, 2311256907767808001, 48658040163532800037, 1072909785605898240031
Offset: 0
The initial terms, in decimal and in factorial base, are:
n a(n) fact(a(n))
- ------- -----------------
0 2 1,0
1 2 1,0
2 5 2,1
3 19 3,0,1
4 97 4,0,0,1
5 601 5,0,0,0,1
6 4327 6,0,0,1,0,1
7 35281 7,0,0,0,0,0,1
8 322571 8,0,0,0,0,1,2,1
9 3265949 9,0,0,0,0,1,0,2,1
-
a(n) = { forprime (p = n*n!, oo, my (q = p); for (r = 2, oo, if (q==0, break, q % r==n, return (p), q \= r););); }
Showing 1-5 of 5 results.
Comments