A090802 Triangle read by rows: a(n,k) = number of k-length walks in the Hasse diagram of a Boolean algebra of order n.
1, 2, 1, 4, 4, 2, 8, 12, 12, 6, 16, 32, 48, 48, 24, 32, 80, 160, 240, 240, 120, 64, 192, 480, 960, 1440, 1440, 720, 128, 448, 1344, 3360, 6720, 10080, 10080, 5040, 256, 1024, 3584, 10752, 26880, 53760, 80640, 80640, 40320
Offset: 0
Examples
{1}; {2, 1}; {4, 4, 2}; {8, 12, 12, 6}; {16, 32, 48, 48, 24}; {32, 80, 160, 240, 240, 120}; {64, 192, 480, 960, 1440, 1440, 720}; {128, 448, 1344, 3360, 6720, 10080, 10080, 5040}; {256, 1024, 3584, 10752, 26880, 53760, 80640, 80640, 40320} a(5,3) = 240 because P(5,3) = 60, 2^(5-3) = 4 and 60 * 4 = 240.
Links
- T. D. Noe, Rows n = 0..100, flattened
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Eric Weisstein, Walk
- Eric Weisstein, Boolean Algebra
- Eric Weisstein, Hasse Diagram
Crossrefs
Programs
-
Mathematica
Flatten[Table[n!/(n-k)! * 2^(n-k), {n, 0, 8}, {k, 0, n}]] (* Ross La Haye, Feb 10 2004 *)
Formula
a(n, k) = 0 for n < k. a(n, k) = k!*C(n, k)*2^(n-k) = P(n, k)*2^(n-k) = (2n)!!/((n-k)!*2^k) = k!*A038207(n, k) = A068424*2^(n-k) = Sum[C(n, m)*P(n-m, k), {m, 0, n-k}] = Sum[C(n, n-m)*P(n-m, k), {m, 0, n-k}] = n!*Sum[1/(m!*(n-m-k)!), {m, 0, n-k}] = k!*Sum[C(n, m)*C(n-m, k), {m, 0, n-k}] = k!*Sum[C(n, n-m)*C(n-m, k), {m, 0, n-k}] = k!*C(n, k)*Sum[C(n-k, n-m-k), {m, 0, n-k}] = k!*C(n, k)*Sum[C(n-k, m), {m, 0, n-k}] for n >= k.
a(n, k) = 0 for n < k. a(n, k) = n*a(n-1, k-1) for n >= k >= 1.
E.g.f. (by columns): exp(2x)*x^k.
Extensions
More terms from Ray Chandler, Feb 26 2004
Entry revised by Ross La Haye, Aug 18 2006
Comments