cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A001787 a(n) = n*2^(n-1).

Original entry on oeis.org

0, 1, 4, 12, 32, 80, 192, 448, 1024, 2304, 5120, 11264, 24576, 53248, 114688, 245760, 524288, 1114112, 2359296, 4980736, 10485760, 22020096, 46137344, 96468992, 201326592, 419430400, 872415232, 1811939328, 3758096384, 7784628224, 16106127360, 33285996544
Offset: 0

Views

Author

Keywords

Comments

Number of edges in an n-dimensional hypercube.
Number of 132-avoiding permutations of [n+2] containing exactly one 123 pattern. - Emeric Deutsch, Jul 13 2001
Number of ways to place n-1 nonattacking kings on a 2 X 2(n-1) chessboard for n >= 2. - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), May 22 2001
Arithmetic derivative of 2^n: a(n) = A003415(A000079(n)). - Reinhard Zumkeller, Feb 26 2002
(-1) times the determinant of matrix A_{i,j} = -|i-j|, 0 <= i,j <= n.
a(n) is the number of ones in binary numbers 1 to 111...1 (n bits). a(n) = A000337(n) - A000337(n-1) for n = 2,3,... . - Emeric Deutsch, May 24 2003
The number of 2 X n 0-1 matrices containing n+1 1's and having no zero row or column. The number of spanning trees of the complete bipartite graph K(2,n). This is the case m = 2 of K(m,n). See A072590. - W. Edwin Clark, May 27 2003
Binomial transform of 0,1,2,3,4,5,... (A001477). Without the initial 0, binomial transform of odd numbers.
With an additional leading zero, [0,0,1,4,...] this is the binomial transform of the integers repeated A004526. Its formula is then (2^n*(n-1) + 0^n)/4. - Paul Barry, May 20 2003
Number of zeros in all different (n+1)-bit integers. - Ralf Stephan, Aug 02 2003
From Lekraj Beedassy, Jun 03 2004: (Start)
Final element of a summation table (as opposed to a difference table) whose first row consists of integers 0 through n (or first n+1 nonnegative integers A001477); illustrating the case n=5:
0 1 2 3 4 5
1 3 5 7 9
4 8 12 16
12 20 28
32 48
80
and the final element is a(5)=80. (End)
This sequence and A001871 arise in counting ordered trees of height at most k where only the rightmost branch at the root actually achieves this height and the count is by the number of edges, with k = 3 for this sequence and k = 4 for A001871.
Let R be a binary relation on the power set P(A) of a set A having n = |A| elements such that for all elements x,y of P(A), xRy if x is a proper subset of y and there are no z in P(A) such that x is a proper subset of z and z is a proper subset of y. Then a(n) = |R|. - Ross La Haye, Sep 21 2004
Number of 2 X n binary matrices avoiding simultaneously the right-angled numbered polyomino patterns (ranpp) (00;1) and (10;1). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1 < i2, j1 < j2 and these elements are in same relative order as those in the triple (x,y,z). - Sergey Kitaev, Nov 11 2004
Number of subsequences 00 in all binary words of length n+1. Example: a(2)=4 because in 000,001,010,011,100,101,110,111 the sequence 00 occurs 4 times. - Emeric Deutsch, Apr 04 2005
If you expand the n-factor expression (a+1)*(b+1)*(c+1)*...*(z+1), there are a(n) variables in the result. For example, the 3-factor expression (a+1)*(b+1)*(c+1) expands to abc+ab+ac+bc+a+b+c+1 with a(3) = 12 variables. - David W. Wilson, May 08 2005
An inverse Chebyshev transform of n^2, where g(x)->(1/sqrt(1-4*x^2))*g(x*c(x^2)), c(x) the g.f. of A000108. - Paul Barry, May 13 2005
Sequences A018215 and A058962 interleaved. - Graeme McRae, Jul 12 2006
The number of never-decreasing positive integer sequences of length n with a maximum value of 2*n. - Ben Paul Thurston, Nov 13 2006
Total size of all the subsets of an n-element set. For example, a 2-element set has 1 subset of size 0, 2 subsets of size 1 and 1 of size 2. - Ross La Haye, Dec 30 2006
Convolution of the natural numbers [A000027] and A045623 beginning [0,1,2,5,...]. - Ross La Haye, Feb 03 2007
If M is the matrix (given by rows) [2,1;0,2] then the sequence gives the (1,2) entry in M^n. - Antonio M. Oller-Marcén, May 21 2007
If X_1,X_2,...,X_n is a partition of a 2n-set X into 2-blocks then, for n > 0, a(n) is equal to the number of (n+1)-subsets of X intersecting each X_i (i=1,2,...,n). - Milan Janjic, Jul 21 2007
Number of n-permutations of 3 objects u,v,w, with repetition allowed, containing exactly one u. Example: a(2)=4 because we have uv, vu, uw and wu. - Zerinvary Lajos, Dec 27 2007
A member of the family of sequences defined by a(n) = n*[c(1)*...*c(r)]^(n-1); c(i) integer. This sequence has c(1)=2, A027471 has c(1)=3. - Ctibor O. Zizka, Feb 23 2008
a(n) is the number of ways to split {1,2,...,n-1} into two (possibly empty) complementary intervals {1,2,...,i} and {i+1,i+2,...,n-1} and then select a subset from each interval. - Geoffrey Critzer, Jan 31 2009
Equals the Jacobsthal sequence A001045 convolved with A003945: (1, 3, 6, 12, ...). - Gary W. Adamson, May 23 2009
Starting with offset 1 = A059570: (1, 2, 6, 14, 34, ...) convolved with (1, 2, 2, 2, ...). - Gary W. Adamson, May 23 2009
Equals the first left hand column of A167591. - Johannes W. Meijer, Nov 12 2009
The number of tatami tilings of an n X n square with n monomers is n*2^(n-1). - Frank Ruskey, Sep 25 2010
Under T. D. Noe's variant of the hypersigma function, this sequence gives hypersigma(2^n): a(n) = A191161(A000079(n)). - Alonso del Arte, Nov 04 2011
Number of Dyck (n+2)-paths with exactly one valley at height 1 and no higher valley. - David Scambler, Nov 07 2011
Equals triangle A059260 * A016777 as a vector, where A016777 = (3n + 1): [1, 4, 7, 10, 13, ...]. - Gary W. Adamson, Mar 06 2012
Main transitions in systems of n particles with spin 1/2 (see A212697 with b=2). - Stanislav Sykora, May 25 2012
Let T(n,k) be the triangle with (first column) T(n,1) = 2*n-1 for n >= 1, otherwise T(n,k) = T(n,k-1) + T(n-1,k-1), then a(n) = T(n,n). - J. M. Bergot, Jan 17 2013
Sum of all parts of all compositions (ordered partitions) of n. The equivalent sequence for partitions is A066186. - Omar E. Pol, Aug 28 2013
Starting with a(1)=1: powers of 2 (A000079) self-convolved. - Bob Selcoe, Aug 05 2015
Coefficients of the series expansion of the normalized Schwarzian derivative -S{p(x)}/6 of the polynomial p(x) = -(x-x1)*(x-x2) with x1 + x2 = 1 (cf. A263646). - Tom Copeland, Nov 02 2015
a(n) is the number of North-East lattice paths from (0,0) to (n+1,n+1) that have exactly one east step below y = x-1 and no east steps above y = x+1. Details can be found in Pan and Remmel's link. - Ran Pan, Feb 03 2016
Also the number of maximal and maximum cliques in the n-hypercube graph for n > 0. - Eric W. Weisstein, Dec 01 2017
Let [n]={1,2,...,n}; then a(n-1) is the total number of elements missing in proper subsets of [n] that contain n to form [n]. For example, for n = 3, a(2) = 4 since the proper subsets of [3] that contain 3 are {3}, {1,3}, {2,3} and the total number of elements missing in these subsets to form [3] is 4: 2 in the first subset, 1 in the second, and 1 in the third. - Enrique Navarrete, Aug 08 2020
Number of 3-permutations of n elements avoiding the patterns 132, 231. See Bonichon and Sun. - Michel Marcus, Aug 19 2022

Examples

			a(2)=4 since 2314, 2341,3124 and 4123 are the only 132-avoiding permutations of 1234 containing exactly one increasing subsequence of length 3.
x + 4*x^2 + 12*x^3 + 32*x^4 + 80*x^5 + 192*x^6 + 448*x^7 + ...
a(5) = 1*0 + 5*1 + 10*2 + 10*3 + 5*4 + 1*5 = 80, with 1,5,10,10,5,1 the 5th row of Pascal's triangle. - _J. M. Bergot_, Apr 29 2014
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 796.
  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 131.
  • Clifford A. Pickover, The Math Book, From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics, Sterling Publ., NY, 2009, page 282.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Three other versions, essentially identical, are A085750, A097067, A118442.
Partial sums of A001792.
A058922(n+1) = 4*A001787(n).
Equals A090802(n, 1).
Column k=1 of A038207.
Row sums of A003506, A322427, A322428.

Programs

  • Haskell
    a001787 n = n * 2 ^ (n - 1)
    a001787_list = zipWith (*) [0..] $ 0 : a000079_list
    -- Reinhard Zumkeller, Jul 11 2014
    
  • Magma
    [n*2^(n-1): n in [0..40]]; // Vincenzo Librandi, Feb 04 2016
    
  • Maple
    spec := [S, {B=Set(Z, 0 <= card), S=Prod(Z, B, B)}, labeled]: seq(combstruct[count](spec, size=n), n=0..29); # Zerinvary Lajos, Oct 09 2006
    A001787:=1/(2*z-1)^2; # Simon Plouffe in his 1992 dissertation, dropping the initial zero
  • Mathematica
    Table[Sum[Binomial[n, i] i, {i, 0, n}], {n, 0, 30}] (* Geoffrey Critzer, Mar 18 2009 *)
    f[n_] := n 2^(n - 1); f[Range[0, 40]] (* Vladimir Joseph Stephan Orlovsky, Feb 09 2011 *)
    Array[# 2^(# - 1) &, 40, 0] (* Harvey P. Dale, Jul 26 2011 *)
    Join[{0}, Table[n 2^(n - 1), {n, 20}]] (* Eric W. Weisstein, Dec 01 2017 *)
    Join[{0}, LinearRecurrence[{4, -4}, {1, 4}, 20]] (* Eric W. Weisstein, Dec 01 2017 *)
    CoefficientList[Series[x/(-1 + 2 x)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017 *)
  • PARI
    {a(n) = if( n<0, 0, n * 2^(n-1))}
    
  • PARI
    concat(0, Vec(x/(1-2*x)^2 + O(x^50))) \\ Altug Alkan, Nov 03 2015
    
  • Python
    def A001787(n): return n*(1<Chai Wah Wu, Nov 14 2022

Formula

a(n) = Sum_{k=1..n} k*binomial(n, k). - Benoit Cloitre, Dec 06 2002
E.g.f.: x*exp(2x). - Paul Barry, Apr 10 2003
G.f.: x/(1-2*x)^2.
G.f.: x / (1 - 4*x / (1 + x / (1 - x))). - Michael Somos, Apr 07 2012
A108666(n) = Sum_{k=0..n} binomial(n, k)^2 * a(n). - Michael Somos, Apr 07 2012
PSumSIGN transform of A053220. PSumSIGN transform is A045883. Binomial transform is A027471(n+1). - Michael Somos, Jul 10 2003
Starting at a(1)=1, INVERT transform is A002450, INVERT transform of A049072, MOBIUS transform of A083413, PSUM transform is A000337, BINOMIAL transform is A081038, BINOMIAL transform of A005408. - Michael Somos, Apr 07 2012
a(n) = 2*a(n-1)+2^(n-1).
a(2*n) = n*4^n, a(2*n+1) = (2*n+1)4^n.
G.f.: x/det(I-x*M) where M=[1,i;i,1], i=sqrt(-1). - Paul Barry, Apr 27 2005
Starting 1, 1, 4, 12, ... this is 0^n + n2^(n-1), the binomial transform of the 'pair-reversed' natural numbers A004442. - Paul Barry, Jul 24 2003
Convolution of [1, 2, 4, 8, ...] with itself. - Jon Perry, Aug 07 2003
The signed version of this sequence, n(-2)^(n-1), is the inverse binomial transform of n(-1)^(n-1) (alternating sign natural numbers). - Paul Barry, Aug 20 2003
a(n-1) = (Sum_{k=0..n} 2^(n-k-1)*C(n-k, k)*C(1,(k+1)/2)*(1-(-1)^k)/2) - 0^n/4. - Paul Barry, Oct 15 2004
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)(n-2k)^2. - Paul Barry, May 13 2005
a(n+2) = A049611(n+2) - A001788(n).
a(n) = n! * Sum_{k=0..n} 1/((k - 1)!(n - k)!). - Paul Barry, Mar 26 2003
a(n+1) = Sum_{k=0..n} 4^k * A109466(n,k). - Philippe Deléham, Nov 13 2006
Row sums of A130300 starting (1, 4, 12, 32, ...). - Gary W. Adamson, May 20 2007
Equals row sums of triangle A134083. Equals A002064(n) + (2^n - 1). - Gary W. Adamson, Oct 07 2007
a(n) = 4*a(n-1) - 4*a(n-2), a(0)=0, a(1)=1. - Philippe Deléham, Nov 16 2008
Sum_{n>0} 1/a(n) = 2*log(2). - Jaume Oliver Lafont, Feb 10 2009
a(n) = A000788(A000225(n)) = A173921(A000225(n)). - Reinhard Zumkeller, Mar 04 2010
a(n) = n * A011782(n). - Omar E. Pol, Aug 28 2013
a(n-1) = Sum_{t_1+2*t_2+...+n*t_n=n} (t_1+t_2+...+t_n-1)*multinomial(t_1+t_2 +...+t_n,t_1,t_2,...,t_n). - Mircea Merca, Dec 06 2013
a(n+1) = Sum_{r=0..n} (2*r+1)*C(n,r). - J. M. Bergot, Apr 07 2014
a(n) = A007283(n)*n/6. - Enxhell Luzhnica, Apr 16 2016
a(n) = (A000225(n) + A000337(n))/2. - Anton Zakharov, Sep 17 2016
Sum_{n>0} (-1)^(n+1)/a(n) = 2*log(3/2) = 2*A016578. - Ilya Gutkovskiy, Sep 17 2016
a(n) = Sum_{k=0..n-1} Sum_{i=0..n-1} (i+1) * C(k,i). - Wesley Ivan Hurt, Sep 21 2017
a(n) = Sum_{i=1..n} Sum_{j=1..n} phi(i)*binomial(n, i*j). - Ridouane Oudra, Feb 17 2024

A052849 a(0) = 0; a(n) = 2*n! (n >= 1).

Original entry on oeis.org

0, 2, 4, 12, 48, 240, 1440, 10080, 80640, 725760, 7257600, 79833600, 958003200, 12454041600, 174356582400, 2615348736000, 41845579776000, 711374856192000, 12804747411456000, 243290200817664000, 4865804016353280000, 102181884343418880000, 2248001455555215360000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

For n >= 1 a(n) is the size of the centralizer of a transposition in the symmetric group S_(n+1). - Ahmed Fares (ahmedfares(AT)my-deja.com), May 12 2001
For n > 0, a(n) = n! - A062119(n-1) = number of permutations of length n that have two specified elements adjacent. For example, a(4) = 12 as of the 24 permutations, 12 have say 1 and 2 adjacent: 1234, 2134, 1243, 2143, 3124, 3214, 4123, 4213, 3412, 3421, 4312, 4321. - Jon Perry, Jun 08 2003
With different offset, denominators of certain sums computed by Ramanujan.
From Michael Somos, Mar 04 2004: (Start)
Stirling transform of a(n) = [2, 4, 12, 48, 240, ...] is A000629(n) = [2, 6, 26, 150, 1082, ...].
Stirling transform of a(n-1) = [1, 2, 4, 12, 48, ...] is A007047(n-1) = [1, 3, 11, 51, 299, ...].
Stirling transform of a(n) = [1, 4, 12, 48, 240, ...] is A002050(n) = [1, 5, 25, 149, 1081, ...].
Stirling transform of 2*A006252(n) = [2, 2, 4, 8, 28, ...] is a(n) = [2, 4, 12, 48, 240, ...].
Stirling transform of a(n+1) = [4, 12, 48, 240, ...] is 2*A005649(n) = [4, 16, 88, 616, ...].
Stirling transform of a(n+1) = [4, 12, 48, 240, ...] is 4*A083410(n) = [4, 16, 88, 616, ...]. (End)
Number of {12, 12*, 21, 21*}-avoiding signed permutations in the hyperoctahedral group.
Permanent of the (0, 1)-matrices with (i, j)-th entry equal to 0 if and only if it is in the border but not the corners. The border of a matrix is defined the be the first and the last row, together with the first and the last column. The corners of a matrix are the entries (i = 1, j = 1), (i = 1, j = n), (i = n, j = 1) and (i = n, j = n). - Simone Severini, Oct 17 2004

References

  • B. C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, see p. 520.

Crossrefs

Essentially the same sequence as A098558.
Row 3 of A276955 (from term a(2)=4 onward).

Programs

  • Haskell
    a052849 n = if n == 0 then 0 else 2 * a000142 n
    a052849_list = 0 : fs where fs = 2 : zipWith (*) [2..] fs
    -- Reinhard Zumkeller, Aug 31 2014
    
  • Magma
    [0] cat [2*Factorial(n-1): n in [2..25]]; // Vincenzo Librandi, Nov 03 2014
  • Maple
    spec := [S,{B=Cycle(Z),C=Cycle(Z),S=Union(B,C)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    Join[{0}, 2Range[20]!] (* Harvey P. Dale, Jul 13 2013 *)
  • PARI
    a(n)=if(n<1,0,n!*2)
    

Formula

a(n) = T(n, 2) for n>1, where T is defined as in A080046.
D-finite with recurrence: {a(0) = 0, a(1) = 2, (-1 - n)*a(n+1) + a(n+2)=0}.
E.g.f.: 2*x/(1-x).
a(n) = A090802(n, n - 1) for n > 0. - Ross La Haye, Sep 26 2005
For n >= 1, a(n) = (n+3)!*Sum_{k=0..n+2} (-1)^k*binomial(2, k)/(n + 3 - k). - Milan Janjic, Dec 14 2008
G.f.: 2/Q(0) - 2, where Q(k) = 1 - x*(k + 1)/(1 - x*(k + 1)/Q(k+1) ); (continued fraction ). - Sergei N. Gladkovskii, Apr 01 2013
G.f.: -2 + 2/Q(0), where Q(k) = 1 + k*x - x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 01 2013
G.f.: W(0) - 2 , where W(k) = 1 + 1/( 1 - x*(k+1)/( x*(k+1) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 21 2013
a(n) = A245334(n, n-1), n > 0. - Reinhard Zumkeller, Aug 31 2014
From Amiram Eldar, Jan 15 2023: (Start)
Sum_{n>=1} 1/a(n) = (e-1)/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = (e-1)/(2*e). (End)

Extensions

More terms from Ross La Haye, Sep 26 2005

A010842 Expansion of e.g.f.: exp(2*x)/(1-x).

Original entry on oeis.org

1, 3, 10, 38, 168, 872, 5296, 37200, 297856, 2681216, 26813184, 294947072, 3539368960, 46011804672, 644165281792, 9662479259648, 154599668219904, 2628194359869440, 47307498477912064, 898842471080853504, 17976849421618118656, 377513837853982588928
Offset: 0

Views

Author

Keywords

Comments

Incomplete Gamma Function at 2, more precisely: a(n) = exp(2)*Gamma(1+n,2).
Let P(A) be the power set of an n-element set A. Then a(n) = the total number of ways to add 0 or more elements of A to each element x of P(A) where the elements to add are not elements of x and order of addition is important. - Ross La Haye, Nov 19 2007
a(n) is the number of ways to split the set {1,2,...,n} into two disjoint subsets S,T with S union T = {1,2,...,n} and linearly order S and then choose a subset of T. - Geoffrey Critzer, Mar 10 2009

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 262.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.1.2.

Crossrefs

Programs

  • Magma
    m:=45; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(2*x)/(1-x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Oct 16 2018
  • Maple
    G(x):=exp(2*x)/(1-x): f[0]:=G(x): for n from 1 to 19 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..19); # Zerinvary Lajos, Apr 03 2009
    seq(simplify(exp(1)^2*GAMMA(n+1, 2)), n=0..19); # Peter Luschny, Apr 28 2016
    seq(simplify(KummerU(-n, -n, 2)), n=0..21); # Peter Luschny, May 10 2022
  • Mathematica
    With[{r = Round[n! E^2 - 2^(n + 1)/(n + 1)]}, r - Mod[r, 2^(n - Floor[2/n + Log2[n]])]] (* for n>=4; Stan Wagon, Apr 28 2016 *)
    a[n_] := n! Sum[2^i/i!, {i, 0, n}]
    Table[a[n], {n, 0, 21}] (* Gerry Martens , May 06 2016 *)
    With[{nn=30},CoefficientList[Series[Exp[2x]/(1-x),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, May 27 2019 *)
  • PARI
    x='x+O('x^44); Vec(serlaplace(exp(2*x)/(1-x))) \\ Joerg Arndt, Apr 29 2016
    

Formula

a(n) = row sums of A090802. - Ross La Haye, Aug 18 2006
a(n) = n*a(n-1) + 2^n = (n+2)*a(n-1) - (2*n-2)*a(n-2) = n!*Sum_{j=0..n} floor(2^j/j!). - Henry Bottomley, Jul 12 2001
a(n) is the permanent of the n X n matrix with 3's on the diagonal and 1's elsewhere. a(n) = Sum_{k=0..n} A008290(n, k)*3^k. - Philippe Deléham, Dec 12 2003
Binomial transform of A000522. - Ross La Haye, Sep 15 2004
a(n) = Sum_{k=0..n} k!*binomial(n, k)*2^(n-k). - Paul Barry, Apr 22 2005
a(n) = A066534(n) + 2^n. - Ross La Haye, Nov 16 2005
G.f.: hypergeom([1,k],[],x/(1-2*x))/(1-2*x) with k=1,2,3 is the generating function for A010842, A081923, and A082031. - Mark van Hoeij, Nov 08 2011
E.g.f.: 1/E(0), where E(k) = 1 - x/(1-2/(2+(k+1)/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 21 2011
G.f.: 1/Q(0), where Q(k)= 1 - 2*x - x*(k+1)/(1-x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 18 2013
a(n) ~ n! * exp(2). - Vaclav Kotesovec, Jun 01 2013
From Peter Bala, Sep 25 2013: (Start)
a(n) = n!*e^2 - Sum_{k >= 0} 2^(n + k + 1)/((n + 1)*...*(n + k + 1)).
= n!*e^2 - e^2*( Integral_{t = 0..2} t^n*exp(-t) dt )
= e^2*( Integral_{t >= 2} t^n*exp(-t) dt )
= e^2*( Integral_{t >= 0} t^n*exp(-t)*Heaviside(t-2) dt ),
an integral representation of a(n) as the n-th moment of a nonnegative function on the positive half-axis.
Bottomley's second-order recurrence above a(n) = (n + 2)*a(n-1) - 2*(n - 1)*a(n-2) has n! as a second solution. This yields the finite continued fraction expansion a(n)/n! = 1/(1 - 2/(3 - 2/(4 - 4/(5 - ... - 2*(n - 1)/(n + 2))))) valid for n >= 2. Letting n tend to infinity gives the infinite continued fraction expansion e^2 = 1/(1 - 2/(3 - 2/(4 - 4/(5 - ... - 2*(n - 1)/(n + 2 - ...))))). (End)
a(n) = 2^(n+1)*U(1, n+2, 2), where U is the Bessel U function. - Peter Luschny, Nov 26 2014
For n >= 4, a(n) = r - (r mod 2^(n - floor((2/n) + log_2(n)))) where r = n! * e^2 - 2^(n+1)/(n+1). - Stan Wagon, Apr 28 2016
G.f.: A(x) = 1/(1 - 2*x - x/(1 - x/(1 - 2*x - 2*x/(1 - 2*x/(1 - 2*x - 3*x/(1 - 3*x/(1 - 2*x - 4*x/(1 - 4*x/(1 - 2*x - ... ))))))))). - Peter Bala, May 26 2017
a(n) = Sum_{k=0..n} (-1)^(n-k)*A137346(n, k). - Mélika Tebni, May 10 2022 [This is equivalent to a(n) = KummerU(-n, -n, 2). - Peter Luschny, May 10 2022]
a(n) = F(n), where the function F(x) := 2^(x+1) * Integral_{t >= 0} e^(-2*t)*(1 + t)^x dt smoothly interpolates this sequence to all real values of x. - Peter Bala, Sep 05 2023

A001815 a(n) = binomial(n,2) * 2^(n-1).

Original entry on oeis.org

0, 0, 2, 12, 48, 160, 480, 1344, 3584, 9216, 23040, 56320, 135168, 319488, 745472, 1720320, 3932160, 8912896, 20054016, 44826624, 99614720, 220200960, 484442112, 1061158912, 2315255808, 5033164800, 10905190400, 23555211264, 50734301184, 108984795136
Offset: 0

Views

Author

Keywords

Comments

Number of permutations of length n+3 containing 132 and 123 exactly once. Likewise for the pairs (123,213), (231,321), (312,321).
a(n) is the number of ways to assign n distinct contestants to two (not necessarily equal) distinct teams and then choose a captain for each team. - Geoffrey Critzer, Apr 07 2009
Consider all binary words of length n, and assign a weight to each set bit - the leftmost gets a weight of n-1, the rightmost a weight of 0. a(n) gives the sum of the weights of all n-bit words. For example, if n=3, we have 000, 001, 010, 011, 100, 101, 110, 111 with weights of 0, 0, 1, 1, 2, 2, 3, 3, giving a sum of 12.
a(n) is the number of North-East paths from (0,0) to (n+2,n+2) that have exactly one east step below y = x-1 and exactly one east step above y = x+1. This is related to the paired pattern P_1 and P_2. More details can be found in Pan and Remmel's link. - Ran Pan, Feb 03 2016
a(n) is the number of diagonals of length sqrt(2) in an n-dimensional hypercube (same as diagonals of its two-dimensional faces). - Stanislav Sykora, Oct 23 2016
a(n) is the number of ways to select a team from n players with at least two players, two of whom are the captain and the goalkeeper. - Wojciech Raszka, Apr 10 2019
a(n) is the sum of N_0*N_1 for all binary strings of length n, where N_0 and N_1 are the number of 0's and 1's in the string, respectively. For example, if n=3, we have 000, 001, 010, 011, 100, 101, 110, 111 with products 0, 2, 2, 2, 2, 2, 2, 0, giving a sum of 12. - Sigurd Kittilsen and Jens Otten, Sep 17 2020

Examples

			G.f. = 2*x^2 + 12*x^3 + 48*x^4 + 160*x^5 + 480*x^6 + 1344*x^7 + 3584*x^8 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 801.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [Binomial(n,2)*2^(n-1): n in [0..30]]; // Vincenzo Librandi, Mar 14 2014
  • Maple
    A001815 := proc(n)
        2^(n-2)*n*(n-1) ;
    end proc: # R. J. Mathar, Mar 12 2014
  • Mathematica
    Table[Binomial[n, 2]*2^(n-1), {n, 0, 28}] (* Arkadiusz Wesolowski, Dec 21 2011 *)
    CoefficientList[Series[2 x^2/(1 - 2 x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 14 2014 *)
    LinearRecurrence[{6,-12,8},{0,0,2},30] (* Harvey P. Dale, May 19 2018 *)
  • PARI
    a(n)=binomial(n,2)<<(n-1) \\ Charles R Greathouse IV, Dec 21 2011
    
  • PARI
    my(x='x+O('x^100)); concat([0, 0], Vec(2*x^2/(1-2*x)^3)) \\ Altug Alkan, Nov 01 2015
    
  • Sage
    [lucas_number1(n, 2, 0)*binomial(n,2) for n in range(0, 29)] # Zerinvary Lajos, Mar 10 2009
    

Formula

G.f.: 2*x^2/(1 - 2*x)^3. [Simon Plouffe in his 1992 dissertation]
a(n) = A090802(n, 2).
a(n) = Sum_{i=0..n} i*(n-i)*binomial(n, i). - Benoit Cloitre, Nov 11 2004
a(n) = Sum_{k=0..n} k*2^(k-1). - Zerinvary Lajos, Oct 09 2006
a(n) = Sum_{j=0..n} binomial(n-1,j)*n*j. - Zerinvary Lajos, Oct 19 2006
E.g.f.: x^2*exp(2*x). - Geoffrey Critzer, Apr 07 2009
a(n) = 2^(n-2)*n*(n-1). - Tobias Friedrich (tfried(AT)mpi-inf.mpg.de), Jun 18 2009
a(n) = 2*a(n-1) + n*2^n.
For n > 0, a(n) = 2*A001788(n-1). - Stanislav Sykora, Oct 23 2016
a(n) = a(1-n) * 2^(2*n-1) for all n in Z. - Michael Somos, Oct 25 2016
a(n) = Sum_{k=0..n-1} Sum_{i=0..n-1} k * binomial(n-1,i). - Wesley Ivan Hurt, Sep 20 2017
From Amiram Eldar, Jan 07 2022: (Start)
Sum_{n>=0} 1/a(n) = 2*(1 - log(2)).
Sum_{n>=0} (-1)^n/a(n) = 6*log(3/2) - 2. (End)

A052714 a(n) = 2^(n-1) * n! * Catalan(n-1) for n > 0 with a(0) = 0.

Original entry on oeis.org

0, 1, 4, 48, 960, 26880, 967680, 42577920, 2214051840, 132843110400, 9033331507200, 686533194547200, 57668788341964800, 5305528527460761600, 530552852746076160000, 57299708096576225280000, 6646766139202842132480000, 824199001261152424427520000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

a(n+1) is the number of square roots of any permutation in S_{8*n} whose disjoint cycle decomposition consists of 2*n cycles of length 4. - Luis Manuel Rivera Martínez, Feb 26 2015

Crossrefs

Sequences of the form m^(n-1)*n!*Catalan(n-1): A001813 (m=1), this sequence (or A144828) (m=2), A221954 (m=3), A052734 (m=4), A221953 (m=5), A221955 (m=6).

Programs

  • Magma
    [0] cat [Catalan(n-1)*2^(n-1)*Factorial(n): n in [1..20]]; // Vincenzo Librandi, Mar 11 2013
    
  • Maple
    spec := [S,{B=Union(Z,C),S=Union(B,C),C=Prod(S,S)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    Join[{0}, Table[CatalanNumber[n-1] 2^(n-1) n!, {n,  1, 20}]] (* Vincenzo Librandi, Mar 11 2013 *)
  • PARI
    a(n)=if(n<1,0,2^(n-1)*(2*n-2)!/(n-1)!)
    
  • Sage
    [0]+[2^(n-1)*factorial(n)*catalan_number(n-1) for n in (1..30)] # G. C. Greubel, Apr 02 2021

Formula

E.g.f.: (1- sqrt(1-8*x))/4.
Recurrence: a(1) = 1, 4*(1 - 2*n)*a(n) + a(n+1) = 0.
a(n) = A052701(n)*n!.
a(n) = 8^(n-1)*Gamma(n-1/2)/Pi^(1/2), n>0.
a(n+1) = A090802(2n, n). - Ross La Haye, Oct 18 2005
a(n) = 2^(n-1)*(2*n-2)!/(n-1)! for n>=1.
E.g.f. A(x) satisfies differential equation A'(x)=1/(1-4*A(x)). - Vladimir Kruchinin, May 04 2011
G.f.: x/(1-4x/(1-8x/(1-12x/(1-16x/(1-20x/(1-24x/(1-28x/(1-32x/(1-... (continued fraction). - Philippe Deléham, Jan 07 2012
G.f.: 2*x/G(0), where G(k)= 1 + 1/(1 - 2*x*(8*k+4)/(2*x*(8*k+4) - 1 + 16*x*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 30 2013
a(0) = 0, a(1) = 1; a(n) = 2 * Sum_{k=1..n-1} binomial(n,k) * a(k) * a(n-k). - Ilya Gutkovskiy, Jul 09 2020
From Amiram Eldar, Jan 08 2022: (Start)
Sum_{n>=1} 1/a(n) = 1 + e^(1/8)*sqrt(Pi)*erf(1/(2*sqrt(2)))/(2*sqrt(2)), where erf is the error function.
Sum_{n>=1} (-1)^(n+1)/a(n) = 1 - e^(-1/8)*sqrt(Pi)*erfi(1/(2*sqrt(2)))/(2*sqrt(2)), where erfi is the imaginary error function. (End)

Extensions

Edited by N. J. A. Sloane, Feb 03 2013

A034910 One quarter of octo-factorial numbers.

Original entry on oeis.org

1, 12, 240, 6720, 241920, 10644480, 553512960, 33210777600, 2258332876800, 171633298636800, 14417197085491200, 1326382131865190400, 132638213186519040000, 14324927024144056320000, 1661691534800710533120000, 206049750315288106106880000
Offset: 1

Views

Author

Keywords

Comments

A034910 occurs in connection with the Vandermonde permanent of (1,3,5,7,9,...); see the Mathematica section of A203516. - Clark Kimberling, Jan 03 2012

Examples

			G.f. = x + 12*x^2 + 240*x^3 + 6720*x^4 + 241920*x^5 + 10644480*x^6 + ...
		

Crossrefs

Programs

  • Magma
    [n le 2 select 12^(n-1) else (7*n-3)*Self(n-1) +4*(n-1)*(2*n-3)*Self(n-2): n in [1..30]]; // G. C. Greubel, Oct 20 2022
    
  • Maple
    [seq((2*n)!/(n)!*2^(n-2), n=1..14)]; # Zerinvary Lajos, Sep 25 2006
  • Mathematica
    s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 11, 5!, 8}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
    a[ n_] := Pochhammer[ 1/2, n] 8^n / 4; (* Michael Somos, Feb 04 2015 *)
  • PARI
    {a(n) = if( n==1, 1, n>1, a(n-1) * (8*n - 4), a(n+1) / (8*n + 4))}; /* Michael Somos, Feb 04 2015 */
    
  • SageMath
    [2^(3*n-2)*rising_factorial(1/2, n) for n in range(1,40)] # G. C. Greubel, Oct 20 2022

Formula

4*a(n) = (8*n-4)(!^8) = Product_{j=1..n} (8*j-4) = 4^n*A001147(n) = 2^n*(2*n)!/n!, A001147(n) = (2*n-1)!!.
E.g.f. (-1+(1-8*x)^(-1/2))/4.
a(n) = A090802(2n-1, n). - Ross La Haye, Oct 18 2005
a(n) = ((2*n)!/n!)*2^(n-2). - Zerinvary Lajos, Sep 25 2006
G.f.: x/(1-12*x/(1-8*x/(1-20*x/(1-16*x/(1-28*x/(1-24*x/(1-36*x/(1-32*x/(1-... (continued fraction). - Philippe Deléham, Jan 07 2011
From Peter Bala, Feb 01 2015: (Start)
Recurrence equation: a(n) = (7*n - 3)*a(n-1) + 4*(n - 1)*(2*n - 3)*a(n-2).
The sequence b(n) := a(n)* Sum_{k = 0..n-1} (-1)^k/( 2^k*(2*k + 1)*binomial(2*k,k) ) beginning [1, 11, 222, 6210, 223584, ...] satisfies the same recurrence. This leads to the finite continued fraction expansion b(n)/a(n) = 1/(1 + 1/(11 + 24/(18 + 60/(25 + ... + 4*(n - 1)*(2*n - 3)/(7*n - 3) )))) for n >= 3.
Letting n tend to infinity gives the continued fraction expansion Sum_{k>=0} (-1)^k/( 2^k*(2*k + 1)*binomial(2*k,k) ) = (4/3)*log(2) = 1/(1 + 1/(11 + 24/(18 + 60/(25 + ... + 4*(n - 1)*(2*n - 3)/((7*n - 3) + ... ))))). (End)
From Peter Bala, Feb 03 2015: (Start)
This sequence satisfies several other second order recurrence equations leading to some continued fraction expansions.
1) a(n) = (9*n + 4)*a(n-1) - 4*n*(2*n - 1)*a(n-2).
This recurrence is also satisfied by the (integer) sequence c(n) := a(n)*Sum_{k = 0..n} 1/( 2^k*(2*k + 1)*binomial(2*k,k) ). From this we can obtain the continued fraction expansion Sum_{k >= 0} 1/( 2^k*(2*k + 1)*binomial(2*k,k) ) = (8/sqrt(7))*arctan(sqrt(7)/7) = (8/sqrt(7))*A195699 = 1 + 1/(12 - 24/(22 - 60/(31 - ... - 4*n*(2*n - 1)/((9*n + 4) - ... )))).
2) a(n) = (12*n + 2)*a(n-1) - 8*(2*n - 1)^2*a(n-2).
This recurrence is also satisfied by the (integer) sequence d(n) := a(n)*Sum_{k = 0..n} 1/( (2*k + 1)*2^k ). From this we can obtain the continued fraction expansion Sum_{k >= 0} 1/( (2*k + 1)*2^k ) = (1/sqrt(2))*log(3 + 2*sqrt(2)) = 1 + 2/(12 - 8*3^2/(26 - 8*5^2/(38 - ... - 8*(2*n - 1)^2/((12*n + 2) - ... )))). Cf. A002391.
3) a(n) = (4*n + 6)*a(n-1) + 8*(2*n - 1)^2*a(n-2).
This recurrence is also satisfied by the (integer) sequence e(n) := a(n)*Sum_{k = 0..n} (-1)^k/( (2*k + 1)*2^k ). From this we can obtain the continued fraction expansion Sum_{k >= 0} (-1)^k/( (2*k + 1)*2^k ) = (1/sqrt(2))*arctan(sqrt(2)/2) = 1 - 2/(12 + 8*3^2/(14 + 8*5^2/(18 + ... + 8*(2*n - 1)^2/((4*n + 6) + ... )))). Cf. A073000. (End)
a(n) = (-1)^n / (16*a(-n)) for all n in Z. - Michael Somos, Feb 04 2015
From Amiram Eldar, Jan 08 2022: (Start)
Sum_{n>=1} 1/a(n) = e^(1/8)*sqrt(2*Pi)*erf(1/(2*sqrt(2))), where erf is the error function.
Sum_{n>=1} (-1)^(n+1)/a(n) = e^(-1/8)*sqrt(2*Pi)*erfi(1/(2*sqrt(2))), where erfi is the imaginary error function. (End)

A090888 Matrix defined by a(n,k) = 3^n*Fibonacci(k) - 2^n*Fibonacci(k-2), read by antidiagonals.

Original entry on oeis.org

1, 2, 0, 4, 1, 1, 8, 5, 3, 1, 16, 19, 9, 4, 2, 32, 65, 27, 14, 7, 3, 64, 211, 81, 46, 23, 11, 5, 128, 665, 243, 146, 73, 37, 18, 8, 256, 2059, 729, 454, 227, 119, 60, 29, 13, 512, 6305, 2187, 1394, 697, 373, 192, 97, 47, 21, 1024, 19171, 6561, 4246, 2123, 1151, 600, 311
Offset: 0

Views

Author

Ross La Haye, Feb 12 2004; revised Sep 24 2004, Sep 10 2005

Keywords

Comments

a(0,k) = A000045(k-1); a(1,k) = A000032(k); a(2,k) = A000285(k+1).
a(n,1) = a(n-1,1) + a(n-1,3) for n > 0; a(n,1) = A001047(n) = 2^(2n) - A083324(n); a(n,2) = A000244(n) = 2^(2n) - A005061(n); a(n,3) = 2a(n-1,4) for n > 0; a(n,3) = A027649(n); a(n,4) = A083313(n+1); a(n,5) = A084171(n+1).
Sum[a(n-k,k), {k,0,n}] = A098703(n+1), antidiagonal sums.
Let R, S and T be binary relations on the power set P(A) of a set A having n = |A| elements such that for every element x, y of P(A), xRy if x is a subset of y or y is a subset of x, xSy if x is a subset of y and xTy if x is a proper subset of y. Then a(n,3) = |R|, a(n,2) = |S| and a(n,1) = |T|. Note that a binary relation W on P(A) can be defined also such that for every element x, y of P(A) xWy if x is a proper subset of y and there are no z in P(A) such that x is a proper subset of z and z is a proper subset of y. A090802(n,1) = |W|. Also, a(n,0) = |P(A)|.

Examples

			   1    0    1    1    2    3    5    8    13    21    34
   2    1    3    4    7   11   18   29    47    76   123
   4    5    9   14   23   37   60   97   157   254   411
   8   19   27   46   73  119  192  311   503   814  1317
  16   65   81  146  227  373  600  973  1573  2546  4119
  32  211  243  454  697 1151 1848 2999  4847  7846 12693
  64  665  729 1394 2123 3517 5640 9157 14797 23954 38751
a(5,3) = 454 because Fibonacci(3) = 2, Fibonacci(1) = 1 and (2 * 3^5) - (1 * 2^5) = 454.
		

Programs

  • Mathematica
    Table[3^(n - k) Fibonacci@ k - 2^(n - k) Fibonacci[k - 2], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Nov 28 2015 *)

Formula

a(n, k) = 3^n*Fibonacci(k) - 2^n*Fibonacci(k-2).
a(n, 0) = 2^n, a(n, 1) = 3^n - 2^n, a(n, k) = a(n, k-1) + a(n, k-2) for k > 1.
a(0, k) = Fibonacci(k-1), a(1, k) = Lucas(k), a(n, k) = 5a(n-1, k) - 6a(n-2, k) for n > 1.
O.g.f. (by rows) = (-2^n + (2^(n+1) - 3^n)x)/(-1+x+x^2). - Ross La Haye, Mar 30 2006
a(n,1) - a(n,0) = A003063(n+1). - Ross La Haye, Jun 22 2007
Binomial transform (by columns) of A118654. - Ross La Haye, Jun 22 2007

Extensions

More terms from Ray Chandler, Oct 27 2004

A066534 Total number of walks with length > 0 in the Hasse diagram of a Boolean algebra of order n.

Original entry on oeis.org

0, 1, 6, 30, 152, 840, 5232, 37072, 297600, 2680704, 26812160, 294945024, 3539364864, 46011796480, 644165265408, 9662479226880, 154599668154368, 2628194359738368, 47307498477649920, 898842471080329216
Offset: 0

Views

Author

Peter Bertok (peter(AT)bertok.com), Jan 07 2002

Keywords

Comments

Let P(A) be the power set of an n-element set A. Then a(n) = the total number of ways to add 1 or more elements of A to each element x of P(A) where the elements to add are not elements of x and order of addition is important. - Ross La Haye, Nov 19 2007

Examples

			a(2) = 6 because (2! / 0! * 2^0) + (2! / 1! * 2^1) = 6
		

Crossrefs

Programs

  • Mathematica
    a[ n_ ] := n!Sum[ 2^k/k!, {k, 0, n-1} ]
    Table[n*Gamma[n, 2]*E^2, {n, 0, 19}] (* Ross La Haye, Oct 09 2005 *)

Formula

a(n) = n!*Sum_{i+j= 0} 1/(i!*j!). - Benoit Cloitre, Nov 01 2002
E.g.f.: x*exp(2*x)/(1-x). a(n) = n*(a(n-1)+2^(n-1)). - Vladeta Jovovic, Oct 29 2003
a(n) = Sum_{k=0..n-1} (n! / k!) * 2^k = Sum_{k=0..n-1} P(n, n-k) * 2^k = n! * Sum_{k=0..n-1} 2^k / k! = Sum_{k=1..n} P(n, k) * 2^(n-k) = sum of the n-th row of A090802 from column 1 on = A010842(n) - 2^n = n * A010842(n-1) = binomial transform of A007526 - Ross La Haye, Sep 15 2004
E.g.f.: x/U(0) where U(k) = 1 - 2*x/(2 - 4/(2 + (k+1)/U(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Oct 18 2012
Conjecture: a(n) + (-n-4)*a(n-1) + 4*(n)*a(n-2) + 4*(-n+2)*a(n-3) = 0. - R. J. Mathar, Dec 04 2012
a(n) ~ n! * exp(2). - Vaclav Kotesovec, Jun 01 2013
Mathar's conjectural third-order recurrence above is an easy consequence of Jovovic's first-order recurrence a(n) = n*(a(n-1) + 2^(n-1)). - Peter Bala, Sep 23 2013

Extensions

Edited by Dean Hickerson, Jan 12 2002
Entry revised by Ross La Haye, Aug 18 2006

A217629 Triangle, read by rows, where T(n,k) = k!*C(n, k)*3^(n-k) for n>=0, k=0..n.

Original entry on oeis.org

1, 3, 1, 9, 6, 2, 27, 27, 18, 6, 81, 108, 108, 72, 24, 243, 405, 540, 540, 360, 120, 729, 1458, 2430, 3240, 3240, 2160, 720, 2187, 5103, 10206, 17010, 22680, 22680, 15120, 5040, 6561, 17496, 40824, 81648, 136080, 181440, 181440, 120960, 40320
Offset: 0

Views

Author

Vincenzo Librandi, Nov 10 2012

Keywords

Comments

Triangle formed by the derivatives of x^n evaluated at x=3.
Sum(T(n,k), k=0..n) = A053486(n) (see the Formula section of A053486). Also:
first column: A000244;
second column: A027471;
third column: 2*A027472;
fourth column: 6*A036216;
fifth column: 24*A036217.

Examples

			Triangle begins:
1;
3,     1;
9,     6,     2;
27,    27,    18,     6;
81,    108,   108,    72,     24;
243,   405,   540,    540,    360,    120;
729,   1458,  2430,   3240,   3240,   2160,    720;
2187,  5103,  10206,  17010,  22680,  22680,   15120,   5040;
6561,  17496, 40824,  81648,  136080, 181440,  181440,  120960,  40320; etc.
		

Crossrefs

Programs

  • Magma
    [Factorial(n)/Factorial(n-k)*3^(n-k): k in [0..n], n in [0..10]];
  • Mathematica
    Flatten[Table[n!/(n-k)!*3^(n-k), {n, 0, 10}, {k, 0, n}]]

Formula

T(n,k) = 3^(n-k)*n!/(n-k)! for n>=0, k=0..n.
E.g.f. (by columns): exp(3x)*x^k.

A218016 Triangle, read by rows, where T(n,k) = k!*C(n, k)*5^(n-k) for n>=0, k=0..n.

Original entry on oeis.org

1, 5, 1, 25, 10, 2, 125, 75, 30, 6, 625, 500, 300, 120, 24, 3125, 3125, 2500, 1500, 600, 120, 15625, 18750, 18750, 15000, 9000, 3600, 720, 78125, 109375, 131250, 131250, 105000, 63000, 25200, 5040, 390625, 625000, 875000, 1050000, 1050000, 840000, 504000, 201600, 40320
Offset: 0

Views

Author

Vincenzo Librandi, Nov 10 2012

Keywords

Comments

Triangle formed by the derivatives of x^n evaluated at x=5.
Sum(T(n,k), k=0..n) = A080954(n) (see the Formula section of A080954). . Also:
first column: A000351;
second column: A053464;
third column: 2*A084902;
fourth column: 6*A081143.

Examples

			Triangle begins:
1;
5,      1;
25,     10,     2;
125,    75,     30,     6;
625,    500,    300,    120,     24;
3125,   3125,   2500,   1500,    600,     120;
15625,  18750,  18750,  15000,   9000,    3600,   720;
78125,  109375, 131250, 131250,  105000,  63000,  25200,  5040;
390625, 625000, 875000, 1050000, 1050000, 840000, 504000, 201600, 40320; etc.
		

Crossrefs

Programs

  • Magma
    [Factorial(n)/Factorial(n-k)*5^(n-k): k in [0..n], n in [0..10]];
  • Mathematica
    Flatten[Table[n!/(n-k)!*5^(n-k), {n, 0, 10}, {k, 0, n}]]

Formula

T(n,k) = 5^(n-k)*n!/(n-k)! for n>=0, k=0..n.
E.g.f. (by columns): exp(5x)*x^k.
Showing 1-10 of 16 results. Next