cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A007526 a(n) = n*(a(n-1) + 1), a(0) = 0.

Original entry on oeis.org

0, 1, 4, 15, 64, 325, 1956, 13699, 109600, 986409, 9864100, 108505111, 1302061344, 16926797485, 236975164804, 3554627472075, 56874039553216, 966858672404689, 17403456103284420, 330665665962403999, 6613313319248080000, 138879579704209680021, 3055350753492612960484
Offset: 0

Views

Author

Keywords

Comments

Eighteenth- and nineteenth-century combinatorialists call this the number of (nonnull) "variations" of n distinct objects, namely the number of permutations of nonempty subsets of {1,...,n}. Some early references to this sequence are Izquierdo (1659), Caramuel de Lobkowitz (1670), Prestet (1675) and Bernoulli (1713). - Don Knuth, Oct 16 2001, Aug 16 2004
Stirling transform of A006252(n-1) = [0,1,1,2,4,14,38,...] is a(n-1) = [0,1,4,15,64,...]. - Michael Somos, Mar 04 2004
In particular, for n >= 1 a(n) is the number of nonempty sequences with n or fewer terms, each a distinct element of {1,...,n}. - Rick L. Shepherd, Jun 08 2005
a(n) = VarScheme(1,n). See A128195 for the definition of VarScheme(k,n). - Peter Luschny, Feb 26 2007
if s(n) is a sequence of the form s(0)=x, s(n)= n(s(n-1)+k), then s(n)= n!*x + a(n)*k. - Gary Detlefs, Jun 06 2010
Exponential convolution of factorials (A000142) and nonnegative integers (A001477). - Vladimir Reshetnikov, Oct 07 2016
For n > 0, a(n) is the number of maps f: {1,...,n} -> {1,...,n} satisfying equal(x,y) <= equal(f(x),f(y)) for all x,y, where equal(x,y) is n if x and y are equal and min(x,y) if not. Here equal(x,y) is the equality predicate in the n-valued Gödel logic, see e. g. the Wikipedia chapter on many-valued logics. - Mamuka Jibladze, Mar 12 2025

Examples

			G.f. = x + 4*x^2 + 15*x^3 + 64*x^4 + 325*x^5 + 1956*x^6 + 13699*x^7 + ...
Consider the nonempty subsets of the set {1,2,3,...,n} formed by the first n integers. E.g., for n = 3 we have {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}. For each subset S we determine its number of parts, that is nprts(S). The sum over all subsets is written as sum_{S=subsets}. Then we have A007526 = Sum_{S=subsets} nprts(S)!. E.g., for n = 3 we have 1!+1!+1!+2!+2!+2!+3! = 15. - _Thomas Wieder_, Jun 17 2006
a(3)=15: Let the objects be a, b, and c. The fifteen nonempty ordered subsets are {a}, {b}, {c}, {ab}, {ba}, {ac}, {ca}, {bc}, {cb}, {abc}, {acb}, {bac}, {bca}, {cab} and {cba}.
		

References

  • Jacob Bernoulli, Ars Conjectandi (1713), page 127.
  • Johannes Caramuel de Lobkowitz, Mathesis Biceps Vetus et Nova (Campania: 1670), volume 2, 942-943.
  • J. K. Horn, personal communication to Robert G. Wilson v.
  • Sebastian Izquierdo, Pharus Scientiarum (Lyon: 1659), 327-328.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A068424.
Partial sums of A001339.
Column k=1 of A326659.

Programs

  • GAP
    a:=[0];; for n in [2..25] do a[n]:=(n-1)*(a[n-1]+1); od; a; # Muniru A Asiru, Aug 07 2018
  • Haskell
    a007526 n = a007526_list !! n
    a007526_list = 0 : zipWith (*) [1..] (map (+ 1) a007526_list)
    -- Reinhard Zumkeller, Aug 27 2013
    
  • Maple
    A007526 := n -> add(n!/k!,k=0..n) - 1;
    a := n -> n*hypergeom([1,1-n],[],-1):
    seq(simplify(a(n)), n=0..22); # Peter Luschny, May 09 2017
    # third Maple program:
    a:= proc(n) option remember;
          `if`(n<0, 0, n*(1+a(n-1)))
        end:
    seq(a(n), n=0..23);  # Alois P. Heinz, Jan 06 2020
  • Mathematica
    Table[ Sum[n!/(n - r)!, {r, 1, n}], {n, 0, 20}] (* or *) Table[n!*Sum[1/k!, {k, 0, n - 1}], {n, 0, 20}]
    a=1;Table[a=(a-1)*(n-1);Abs[a],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Nov 20 2009 *)
    FoldList[#1*#2 + #2 &, 0, Range[19]] (* Robert G. Wilson v, Jul 07 2012 *)
    f[n_] := Floor[E*n! - 1]; f[0] = 0; Array[f, 20, 0] (* Robert G. Wilson v, Feb 06 2015 *)
    a[n_] := n (a[n - 1] +1); a[0] = 0; Array[a, 20, 0] (* Robert G. Wilson v, Feb 06 2015 *)
    Round@Table[E n Gamma[n, 1], {n, 0, 20}] (* Round is equivalent to FullSimplify here, but is much faster - Vladimir Reshetnikov, Oct 07 2016 *)
  • PARI
    {a(n) = if( n<1, 0, n * (a(n-1) + 1))}; /* Michael Somos, Apr 06 2003 */
    
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff(x * exp(x + x * O(x^n)) / (1 - x), n))}; /* Michael Somos, Mar 04 2004 */
    
  • PARI
    a(n)= sum(k=1,n, prod(j=0,k-1,n-j))
    

Formula

a(n) = A000522(n) - 1.
a(n) = floor(e*n! - 1). - Joseph K. Horn
a(n) = Sum_{r=1..n} A008279(n, r)= n!*(Sum_{k=0..n-1} 1/k!).
a(n) = n*(a(n-1) + 1).
E.g.f.: x*exp(x)/(1-x). - Vladeta Jovovic, Aug 25 2002
a(n) = Sum_{k=1..n} k!*C(n, k). - Benoit Cloitre, Dec 06 2002
a(n) = Sum_{k=0..n-1} (n! / k!). - Ross La Haye, Sep 22 2004
a(n) = Sum_{k=1..n} (Product_{j=0..k-1} (n-j)). - Joerg Arndt, Apr 24 2011
Binomial transform of n! - !n. - Paul Barry, May 12 2004
Inverse binomial transform of A066534. - Ross La Haye, Sep 16 2004
For n > 0, a(n) = exp(1) * Integral_{x>=0} exp(-exp(x/n)+x) dx. - Gerald McGarvey, Oct 19 2006
a(n) = Integral_{x>=0} (((1+x)^n-1)*exp(-x)). - Paul Barry, Feb 06 2008
a(n) = GAMMA(n+2)*(1+(-GAMMA(n+1)+exp(1)*GAMMA(n+1, 1))/GAMMA(n+1)). - Thomas Wieder, May 02 2009
E.g.f.: -1/G(0) where G(k) = 1 - 1/(x - x^3/(x^2+(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 10 2012
Conjecture : a(n) = (n+2)*a(n-1) - (2*n-1)*a(n-2) + (n-2)*a(n-3). - R. J. Mathar, Dec 04 2012 [Conjecture verified by Robert FERREOL, Aug 04 2018]
G.f.: (Q(0) - 1)/(1-x), where Q(k)= 1 + (2*k + 1)*x/( 1 - x - 2*x*(1-x)*(k+1)/(2*x*(k+1) + (1-x)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 09 2013
G.f.: 2/((1-x)*G(0)) - 1/(1-x), where G(k)= 1 + 1/(1 - x*(2*k+2)/(x*(2*k+3) - 1 + x*(2*k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 31 2013
a(n) = (...((((((0)+1)*1+1)*2+1)*3+1)*4+1)...*n). - Bob Selcoe, Jul 04 2013
G.f.: Q(0)/(2-2*x) - 1/(1-x), where Q(k)= 1 + 1/(1 - x*(k+1)/(x*(k+1) + (1-x)/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 09 2013
G.f.: (W(0) - 1)/(1-x), where W(k) = 1 - x*(k+1)/( x*(k+2) - 1/(1 - x*(k+1)/( x*(k+1) - 1/W(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Aug 25 2013
For n > 0: a(n) = n*A000522(n-1). - Reinhard Zumkeller, Aug 27 2013
a(n) = (...(((((0)*1+1)*2+2)*3+3)*4+4)...*n+n). - Bob Selcoe, Apr 30 2014
0 = 1 + a(n)*(+1 + a(n+1) - a(n+2)) + a(n+1)*(+2 +a(n+1)) - a(n+2) for all n >= 0. - Michael Somos, Aug 30 2016
a(n) = n*hypergeom([1, 1-n], [], -1). - Peter Luschny, May 09 2017
Product_{n>=1} (a(n)+1)/a(n) = e, coming from Product_{n=1..N}(a(n)+1)/a(n) = Sum_{n=0..N} 1/n!. - Robert FERREOL, Jul 12 2018
O.g.f.: Sum_{k>=1} k^k*x^k/(1 + (k - 1)*x)^(k+1). - Ilya Gutkovskiy, Oct 09 2018

A010842 Expansion of e.g.f.: exp(2*x)/(1-x).

Original entry on oeis.org

1, 3, 10, 38, 168, 872, 5296, 37200, 297856, 2681216, 26813184, 294947072, 3539368960, 46011804672, 644165281792, 9662479259648, 154599668219904, 2628194359869440, 47307498477912064, 898842471080853504, 17976849421618118656, 377513837853982588928
Offset: 0

Views

Author

Keywords

Comments

Incomplete Gamma Function at 2, more precisely: a(n) = exp(2)*Gamma(1+n,2).
Let P(A) be the power set of an n-element set A. Then a(n) = the total number of ways to add 0 or more elements of A to each element x of P(A) where the elements to add are not elements of x and order of addition is important. - Ross La Haye, Nov 19 2007
a(n) is the number of ways to split the set {1,2,...,n} into two disjoint subsets S,T with S union T = {1,2,...,n} and linearly order S and then choose a subset of T. - Geoffrey Critzer, Mar 10 2009

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 262.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.1.2.

Crossrefs

Programs

  • Magma
    m:=45; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(2*x)/(1-x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Oct 16 2018
  • Maple
    G(x):=exp(2*x)/(1-x): f[0]:=G(x): for n from 1 to 19 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..19); # Zerinvary Lajos, Apr 03 2009
    seq(simplify(exp(1)^2*GAMMA(n+1, 2)), n=0..19); # Peter Luschny, Apr 28 2016
    seq(simplify(KummerU(-n, -n, 2)), n=0..21); # Peter Luschny, May 10 2022
  • Mathematica
    With[{r = Round[n! E^2 - 2^(n + 1)/(n + 1)]}, r - Mod[r, 2^(n - Floor[2/n + Log2[n]])]] (* for n>=4; Stan Wagon, Apr 28 2016 *)
    a[n_] := n! Sum[2^i/i!, {i, 0, n}]
    Table[a[n], {n, 0, 21}] (* Gerry Martens , May 06 2016 *)
    With[{nn=30},CoefficientList[Series[Exp[2x]/(1-x),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, May 27 2019 *)
  • PARI
    x='x+O('x^44); Vec(serlaplace(exp(2*x)/(1-x))) \\ Joerg Arndt, Apr 29 2016
    

Formula

a(n) = row sums of A090802. - Ross La Haye, Aug 18 2006
a(n) = n*a(n-1) + 2^n = (n+2)*a(n-1) - (2*n-2)*a(n-2) = n!*Sum_{j=0..n} floor(2^j/j!). - Henry Bottomley, Jul 12 2001
a(n) is the permanent of the n X n matrix with 3's on the diagonal and 1's elsewhere. a(n) = Sum_{k=0..n} A008290(n, k)*3^k. - Philippe Deléham, Dec 12 2003
Binomial transform of A000522. - Ross La Haye, Sep 15 2004
a(n) = Sum_{k=0..n} k!*binomial(n, k)*2^(n-k). - Paul Barry, Apr 22 2005
a(n) = A066534(n) + 2^n. - Ross La Haye, Nov 16 2005
G.f.: hypergeom([1,k],[],x/(1-2*x))/(1-2*x) with k=1,2,3 is the generating function for A010842, A081923, and A082031. - Mark van Hoeij, Nov 08 2011
E.g.f.: 1/E(0), where E(k) = 1 - x/(1-2/(2+(k+1)/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 21 2011
G.f.: 1/Q(0), where Q(k)= 1 - 2*x - x*(k+1)/(1-x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 18 2013
a(n) ~ n! * exp(2). - Vaclav Kotesovec, Jun 01 2013
From Peter Bala, Sep 25 2013: (Start)
a(n) = n!*e^2 - Sum_{k >= 0} 2^(n + k + 1)/((n + 1)*...*(n + k + 1)).
= n!*e^2 - e^2*( Integral_{t = 0..2} t^n*exp(-t) dt )
= e^2*( Integral_{t >= 2} t^n*exp(-t) dt )
= e^2*( Integral_{t >= 0} t^n*exp(-t)*Heaviside(t-2) dt ),
an integral representation of a(n) as the n-th moment of a nonnegative function on the positive half-axis.
Bottomley's second-order recurrence above a(n) = (n + 2)*a(n-1) - 2*(n - 1)*a(n-2) has n! as a second solution. This yields the finite continued fraction expansion a(n)/n! = 1/(1 - 2/(3 - 2/(4 - 4/(5 - ... - 2*(n - 1)/(n + 2))))) valid for n >= 2. Letting n tend to infinity gives the infinite continued fraction expansion e^2 = 1/(1 - 2/(3 - 2/(4 - 4/(5 - ... - 2*(n - 1)/(n + 2 - ...))))). (End)
a(n) = 2^(n+1)*U(1, n+2, 2), where U is the Bessel U function. - Peter Luschny, Nov 26 2014
For n >= 4, a(n) = r - (r mod 2^(n - floor((2/n) + log_2(n)))) where r = n! * e^2 - 2^(n+1)/(n+1). - Stan Wagon, Apr 28 2016
G.f.: A(x) = 1/(1 - 2*x - x/(1 - x/(1 - 2*x - 2*x/(1 - 2*x/(1 - 2*x - 3*x/(1 - 3*x/(1 - 2*x - 4*x/(1 - 4*x/(1 - 2*x - ... ))))))))). - Peter Bala, May 26 2017
a(n) = Sum_{k=0..n} (-1)^(n-k)*A137346(n, k). - Mélika Tebni, May 10 2022 [This is equivalent to a(n) = KummerU(-n, -n, 2). - Peter Luschny, May 10 2022]
a(n) = F(n), where the function F(x) := 2^(x+1) * Integral_{t >= 0} e^(-2*t)*(1 + t)^x dt smoothly interpolates this sequence to all real values of x. - Peter Bala, Sep 05 2023

A090802 Triangle read by rows: a(n,k) = number of k-length walks in the Hasse diagram of a Boolean algebra of order n.

Original entry on oeis.org

1, 2, 1, 4, 4, 2, 8, 12, 12, 6, 16, 32, 48, 48, 24, 32, 80, 160, 240, 240, 120, 64, 192, 480, 960, 1440, 1440, 720, 128, 448, 1344, 3360, 6720, 10080, 10080, 5040, 256, 1024, 3584, 10752, 26880, 53760, 80640, 80640, 40320
Offset: 0

Views

Author

Ross La Haye, Feb 10 2004

Keywords

Comments

Row sums = A010842(n); Row sums from column 1 on = A066534(n) = n*A010842(n-1) = A010842(n) - 2^n.
a(n,k) = n! = k! = A000142(n) for n = k; a(n,n-1) = 2*n! = A052849(n) for n > 1; a(n,n-2) = 2*n! = A052849(n) for n > 2; a(n,n-3) = (4/3)*n! = A082569(n) for n > 3; a(n,n-1)/a(2,1) = n!/2! = A001710(n) for n > 1; a(n,n-2)/ a(3,1) = n!/3! = A001715(n) for n > 2; a(n,n-3)/a(4,1) = n!/4! = A001720(n) for n > 3.
a(2k, k) = A052714(k+1). a(2k-1, k) = A034910(k).
a(n,0) = A000079(n); a(n,1) = A001787(n) = row sums of A003506; a(n,2) = A001815(n) = 2!*A001788(n-1); a(n,3) = A052771(n) = 3!*A001789(n); a(n,4) = A052796(n) = 4!*A003472(n); ceiling[a(n,1) / 2] = A057711(n); a(n,5) = 5!*A054849(n).
In a class of n students, the number of committees (of any size) that contain an ordered k-sized subcommittee is a(n,k). - Ross La Haye, Apr 17 2006
Antidiagonal sums [1,2,5,12,30,76,198,528,1448,4080,...] appear to be binomial transform of A000522 interleaved with itself, i.e., 1,1,2,2,5,5,16,16,65,65,... - Ross La Haye, Sep 09 2006
Let P(A) be the power set of an n-element set A. Then a(n,k) = the number of ways to add k elements of A to each element x of P(A) where the k elements are not elements of x and order of addition is important. - Ross La Haye, Nov 19 2007
The derivatives of x^n evaluated at x=2. - T. D. Noe, Apr 21 2011

Examples

			{1};
{2, 1};
{4, 4, 2};
{8, 12, 12, 6};
{16, 32, 48, 48, 24};
{32, 80, 160, 240, 240, 120};
{64, 192, 480, 960, 1440, 1440, 720};
{128, 448, 1344, 3360, 6720, 10080, 10080, 5040};
{256, 1024, 3584, 10752, 26880, 53760, 80640, 80640, 40320}
a(5,3) = 240 because P(5,3) = 60, 2^(5-3) = 4 and 60 * 4 = 240.
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[n!/(n-k)! * 2^(n-k), {n, 0, 8}, {k, 0, n}]] (* Ross La Haye, Feb 10 2004 *)

Formula

a(n, k) = 0 for n < k. a(n, k) = k!*C(n, k)*2^(n-k) = P(n, k)*2^(n-k) = (2n)!!/((n-k)!*2^k) = k!*A038207(n, k) = A068424*2^(n-k) = Sum[C(n, m)*P(n-m, k), {m, 0, n-k}] = Sum[C(n, n-m)*P(n-m, k), {m, 0, n-k}] = n!*Sum[1/(m!*(n-m-k)!), {m, 0, n-k}] = k!*Sum[C(n, m)*C(n-m, k), {m, 0, n-k}] = k!*Sum[C(n, n-m)*C(n-m, k), {m, 0, n-k}] = k!*C(n, k)*Sum[C(n-k, n-m-k), {m, 0, n-k}] = k!*C(n, k)*Sum[C(n-k, m), {m, 0, n-k}] for n >= k.
a(n, k) = 0 for n < k. a(n, k) = n*a(n-1, k-1) for n >= k >= 1.
E.g.f. (by columns): exp(2x)*x^k.

Extensions

More terms from Ray Chandler, Feb 26 2004
Entry revised by Ross La Haye, Aug 18 2006

A346394 Expansion of e.g.f. -log(1 - x) * exp(2*x).

Original entry on oeis.org

0, 1, 5, 20, 78, 324, 1520, 8336, 53872, 405600, 3492416, 33798016, 362543104, 4264455168, 54540715008, 753246711808, 11168972683264, 176937613586432, 2982069587042304, 53271637651996672, 1005385746384846848, 19987620914387812352, 417489079682758213632
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 15 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[-Log[1 - x] Exp[2 x], {x, 0, nmax}], x] Range[0, nmax]!
    Table[n! Sum[2^k/((n - k) k!), {k, 0, n - 1}], {n, 0, 22}]
  • PARI
    a_vector(n) = my(v=vector(n+1, i, if(i==2, 1, 0))); for(i=2, n, v[i+1]=(i+1)*v[i]-2*(i-1)*v[i-1]+2^(i-1)); v; \\ Seiichi Manyama, May 27 2022

Formula

a(n) = n! * Sum_{k=0..n-1} 2^k / ((n-k) * k!).
a(n) = Sum_{k=0..n} binomial(n,k) * A002104(k).
a(n) ~ exp(2) * (n-1)!. - Vaclav Kotesovec, Aug 09 2021
a(0) = 0, a(1) = 1, a(n) = (n+1) * a(n-1) - 2 * (n-1) * a(n-2) + 2^(n-1). - Seiichi Manyama, May 27 2022

A335111 a(n) = n! * Sum_{k=0..n-1} (-2)^k / k!.

Original entry on oeis.org

0, 1, -2, 6, -8, 40, 48, 784, 5248, 49536, 490240, 5403904, 64822272, 842742784, 11798284288, 176974510080, 2831591636992, 48137058942976, 866467058614272, 16462874118651904, 329257482362552320, 6914407129635618816, 152116956851937476608, 3498690007594658430976
Offset: 0

Views

Author

Ilya Gutkovskiy, May 23 2020

Keywords

Comments

Inverse binomial transform of A000240.

Crossrefs

Programs

  • Mathematica
    Table[n! Sum[(-2)^k/k!, {k, 0, n - 1}], {n, 0, 23}]
    nmax = 23; CoefficientList[Series[Sum[k! x^k/(1 + 2 x)^(k + 1), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 23; CoefficientList[Series[x Exp[-2 x]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    a(n) = n! * sum(k=0, n-1, (-2)^k / k!); \\ Michel Marcus, May 23 2020

Formula

G.f.: Sum_{k>=1} k! * x^k / (1 + 2*x)^(k + 1).
E.g.f.: x*exp(-2*x) / (1 - x).
a(n) = A000023(n) - A122803(n).
a(n) ~ exp(-2) * n!. - Vaclav Kotesovec, Jun 08 2022
a(n) = Sum_{k=0..n} (-1)^k * k * A008290(n,k). - Alois P. Heinz, May 20 2023

A348312 a(n) = n! * Sum_{k=0..n-1} 3^k / k!.

Original entry on oeis.org

0, 1, 8, 51, 312, 1965, 13248, 97839, 800208, 7260921, 72806040, 801515979, 9620317512, 125071036389, 1751016829968, 26265324194055, 420245416687392, 7144172815479921, 128595113003161512, 2443307154421058019, 48866143111666389720, 1026189005418216656541, 22576158119430894214368
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 11 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! Sum[3^k/k!, {k, 0, n - 1}], {n, 0, 22}]
    nmax = 22; CoefficientList[Series[x Exp[3 x]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    a(n) = n!*sum(k=0, n-1, 3^k/k!); \\ Michel Marcus, Oct 11 2021

Formula

E.g.f.: x * exp(3*x) / (1 - x).
a(0) = 0; a(n) = n * (a(n-1) + 3^(n-1)).
a(n) ~ exp(3)*n!. - Stefano Spezia, Oct 11 2021

A348314 a(n) = n! * Sum_{k=0..n-1} 4^k / k!.

Original entry on oeis.org

0, 1, 10, 78, 568, 4120, 30864, 244720, 2088832, 19389312, 196514560, 2173194496, 26128665600, 339890756608, 4759410116608, 71395178280960, 1142340032364544, 19419853564641280, 349557673401188352, 6641597100292636672, 132831947503410872320, 2789470920661372502016
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 11 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! Sum[4^k/k!, {k, 0, n - 1}], {n, 0, 21}]
    nmax = 21; CoefficientList[Series[x Exp[4 x]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    a(n) = n!*sum(k=0, n-1, 4^k/k!); \\ Michel Marcus, Oct 11 2021

Formula

E.g.f.: x * exp(4*x) / (1 - x).
a(0) = 0; a(n) = n * (a(n-1) + 4^(n-1)).
a(n) ~ exp(4)*n!. - Stefano Spezia, Oct 11 2021

A137387 Triangular sequence from coefficients of the expansion of p(x,t)=Exp[2*x*t]*t/(1 - t).

Original entry on oeis.org

0, 1, 2, 4, 6, 12, 12, 24, 48, 48, 32, 120, 240, 240, 160, 80, 720, 1440, 1440, 960, 480, 192, 5040, 10080, 10080, 6720, 3360, 1344, 448, 40320, 80640, 80640, 53760, 26880, 10752, 3584, 1024, 362880, 725760, 725760, 483840, 241920, 96768, 32256, 9216
Offset: 1

Views

Author

Roger L. Bagula, Apr 26 2008

Keywords

Comments

Row sums = A066534.

Examples

			{0},
{1},
{2, 4},
{6, 12, 12},
{24, 48, 48, 32},
{120, 240, 240, 160, 80},
{720, 1440, 1440, 960, 480, 192},
{5040, 10080, 10080, 6720, 3360, 1344, 448},
{40320, 80640, 80640, 53760, 26880, 10752, 3584, 1024},
{362880, 725760, 725760, 483840, 241920, 96768, 32256, 9216, 2304},
{3628800, 7257600, 7257600, 4838400, 2419200, 967680, 322560, 92160, 23040,5120}
		

References

  • Terrell Hill, Statistical Mechanics, Dover, 1987, page 417

Crossrefs

Cf. A066534.

Programs

  • Mathematica
    p[t_] = Exp[2*x*t]*t/(1 - t); Table[ ExpandAll[n!*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[n!* CoefficientList[SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}]; Flatten[a]

Formula

p(x,t)=Exp[2*x*t]*t/(1 - t)=Sum[P(x,n)*t6n/n!,{n,1,Infinity}]; out_n,m=n!*Coefficients(P(x,n)).

A359110 Number of Boolean monoids of order 2^n up to isomorphism.

Original entry on oeis.org

1, 5, 83, 242547
Offset: 1

Views

Author

Choiwah Chow, Dec 18 2022

Keywords

Crossrefs

Showing 1-9 of 9 results.