A090998 Decimal expansion of lim_{k -> +-oo} k^2*(1 - Gamma(1+i/k)) where i^2 = -1 and Gamma is the Gamma function.
9, 8, 9, 0, 5, 5, 9, 9, 5, 3, 2, 7, 9, 7, 2, 5, 5, 5, 3, 9, 5, 3, 9, 5, 6, 5, 1, 5, 0, 0, 6, 3, 4, 7, 0, 7, 9, 3, 9, 1, 8, 3, 5, 2, 0, 7, 2, 8, 2, 1, 4, 0, 9, 0, 4, 4, 3, 1, 9, 5, 7, 8, 3, 6, 8, 6, 1, 3, 6, 6, 3, 2, 0, 4, 9, 4, 7, 8, 7, 7, 1, 7, 4, 7, 4, 4, 6, 0, 8, 4, 6, 2, 5, 7, 3, 7, 3, 4, 1, 3, 0, 3, 5, 2
Offset: 0
Examples
G(2,1) = 0.9890559953279725553953956515...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- J. W. Meijer and N. H. G. Baken, The Exponential Integral Distribution, Statistics and Probability Letters, Volume 5, No. 3, April 1987, pp. 209-211.
Crossrefs
The structure of the G(k,n=1) formulas lead (replace gamma with G and Zeta with Z) to A036039. - Johannes W. Meijer and Nico Baken, Aug 13 2009
Cf. A081855.
Programs
-
Magma
SetDefaultRealField(RealField(100)); R:= RealField(); (6*EulerGamma(R)^2 + Pi(R)^2)/12; // G. C. Greubel, Feb 01 2019
-
Maple
ncol:=1; nmax:=5; kmax:=nmax; for n from 1 to nmax do G(0,n):=1 od: for n from 1 to nmax do for k from 1 to kmax do G(k,n):= expand((1/k)*((gamma-sum(p^(-1),p=1..n-1))* G(k-1,n)+sum((Zeta(k-i)-sum(p^(-(k-i)),p=1..n-1))*G(i,n),i=0..k-2))) od; od: for k from 0 to kmax do G(k,ncol):=G(k,ncol) od; # Johannes W. Meijer and Nico Baken, Aug 13 2009
-
Mathematica
RealDigits[(6*EulerGamma^2 + Pi^2)/12, 10, 104][[1]] (* Jean-François Alcover, Mar 04 2013 *)
-
PARI
default(realprecision, 100); (6*Euler^2 +Pi^2)/12 \\ G. C. Greubel, Feb 01 2019
-
Sage
numerical_approx((6*euler_gamma^2 + pi^2)/12, digits=100) # G. C. Greubel, Feb 01 2019
Formula
From Johannes W. Meijer and Nico Baken, Aug 13 2009: (Start)
G(2,1) = gamma(2,1) = gamma^2/2 + Pi^2/12.
G(k,n) = (1/k)*(gamma*G(k-1,n)) - (1/k)*Sum_{p=1..n-1} (p^(-1))* G(k-1,n) + (1/k) * Sum_{i=0..k-2} (Zeta(k-i) * G(i,n)) - (1/k)*Sum_{i=0..k-2}(Sum_{p=1..n-1} (p^(i-k)) * G(i,n)) with G(0,n) = 1 for k >= 0 and n >= 1.
G(k,n+1) = G(k,n) - G(k-1,n)/n.
GF(z,n) = GAMMA(n-z)/GAMMA(n).
Equals A081855/2. - Hugo Pfoertner, Mar 12 2024
Comments