cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A163930 Duplicate of A090998.

Original entry on oeis.org

9, 8, 9, 0, 5, 5, 9, 9, 5, 3, 2, 7, 9, 7, 2, 5, 5, 5, 3, 9, 5, 3, 9, 5, 6, 5, 1, 5, 0, 0, 6, 3, 4, 7, 0, 7, 9, 3, 9, 1, 8, 3, 5, 2, 0, 7, 2, 8, 2, 1, 4, 0, 9, 0, 4, 4, 3, 1, 9, 5, 7, 8, 3, 6, 8, 6, 1, 3, 6, 6, 3, 2, 0, 4, 9, 4, 7, 8, 7, 7, 1, 7, 4, 7, 4, 4, 6, 0, 8, 4, 6, 2, 5, 7, 3, 7, 3, 4, 1, 3, 0, 3, 5, 2
Offset: 0

Views

Author

Johannes W. Meijer and Nico Baken, Aug 13 2009, Aug 17 2009

Keywords

Comments

The higher order exponential integrals, see A163931, are defined by E(x,m,n) = x^(n-1)*int(E(t,m-1,n)/t^n, t=x..infinity) for m>=1 and n>=1, with E(x,m=0,n) = exp(-x).
The series expansions of the higher order exponential integrals are dominated by the gamma(k,n) and the alpha(k,n) constants, see A163927.
The values of the gamma(k,n) = G(k,n) coefficients can be determined with the Maple program.

Examples

			G(2,1) = 0.9890559953279725553953956515...
		

Crossrefs

Cf. A163931 (E(x,m,n)), A163927 (alpha(k,n)).
G(1,1) equals A001620 (gamma).
(gamma - G(1,n)) equals A001008(n-1)/A002805(n-1) for n>=2.
The structure of the G(k,n=1) formulas lead (replace gamma by G and Zeta by Z) to A036039.

Programs

  • Maple
    ncol:=1; nmax:=5; kmax:=nmax; for n from 1 to nmax do G(0,n):=1 od: for n from 1 to nmax do for k from 1 to kmax do G(k,n):= expand((1/k)*((gamma-sum(p^(-1),p=1..n-1))* G(k-1,n)+sum((Zeta(k-i)-sum(p^(-(k-i)),p=1..n-1))*G(i,n),i=0..k-2))) od; od: for k from 0 to kmax do G(k,ncol):=G(k,ncol) od;
  • Mathematica
    RealDigits[ N[ EulerGamma^2/2 + Pi^2/12, 105]][[1]] (* Jean-François Alcover, Nov 07 2012, from 1st formula *)

Formula

G(2,1) = gamma(2,1) = gamma^2/2+Pi^2/12.
G(k,n) = (1/k)*(gamma*G(k-1,n)) - (1/k)*Sum_{p=1..n-1}(p^(-1))* G(k-1,n) + (1/k)* Sum_{i=0..k-2}(Zeta(k-i) * G(i,n)) - (1/k)*Sum_{i=0..k-2}(Sum_{p=1..n-1}(p^(i-k)) * G(i,n)) with G(0,n) = 1 for k>=0 and n>=1.
G(k,n+1) = G(k,n) -G(k-1,n)/n.
GF(z,n) = GAMMA(n-z)/GAMMA(n).

A163931 Decimal expansion of the higher-order exponential integral E(x, m=2, n=1) at x=1.

Original entry on oeis.org

0, 9, 7, 8, 4, 3, 1, 9, 7, 2, 1, 6, 6, 7, 0, 1, 7, 9, 3, 2, 5, 5, 3, 7, 7, 8, 9, 0, 4, 5, 2, 8, 0, 0, 8, 2, 7, 6, 9, 5, 8, 2, 2, 6, 9, 5, 3, 0, 2, 6, 5, 7, 6, 5, 5, 7, 4, 4, 2, 1, 2, 4, 2, 4, 5, 4, 4, 7, 1, 3, 7, 6, 2, 6, 1, 4, 0, 9, 0, 4, 8, 8, 7, 3, 6, 9, 6, 0, 4, 8, 9, 1, 8, 5, 5, 5, 0, 8, 9, 4, 5, 4, 6, 7, 0
Offset: 0

Views

Author

Johannes W. Meijer and Nico Baken, Aug 13 2009, Aug 17 2009

Keywords

Comments

We define the higher-order exponential integrals by E(x,m,n) = x^(n-1)*Integral_{t=x..infinity} E(t,m-1,n)/t^n for m >= 1 and n >= 1 with E(x,m=0,n) = exp(-x), see Meijer and Baken.
The properties of the E(x,m,n) are analogous to those of the well-known exponential integrals E(x,m=1,n), see Abramowitz and Stegun and the formulas.
The series expansions of the higher-order exponential integrals are dominated by the constants alpha(k,n), see A163927, and gamma(k,n) = G(k,n), see A090998.
For information about the asymptotic expansion of the E(x,m,n) see A163932.
Values of E(x,m,n) can be evaluated with the Maple program.

Examples

			E(1,2,1) = 0.09784319721667017932553778904528008276958226953026576557442124245....
		

Crossrefs

Cf. A163927 (alpha(k,n)), A090998 (gamma(k,n) = G(k,n)), A163932.
Cf. A068985 (E(x=1,m=0,n) = exp(-1)) and A099285 (E(x=1,m=1,n=1)).
Cf. A001563 (n*n!), A002775 (n^2*n!), A091363 (n^3*n!) and A091364 (n^4*n!).

Programs

  • Maple
    E:= proc(x,m,n) local nmax, kmax, EI, k1, k2, n1, n2; option remember: nmax:=20; kmax:=20; k1:=0: for n1 from 0 to nmax do alpha(k1,n1):=1 od: for k1 from 1 to kmax do for n1 from 1 to nmax do alpha(k1,n1) := (1/k1)*sum(sum(p^(-2*(k1-i1)),p=0..n1-1)*alpha(i1, n1),i1=0..k1-1) od; od: for n2 from 0 to kmax do G(0,n2):=1 od: for n2 from 1 to nmax do for k2 from 1 to kmax do G(k2,n2):=(1/k2)*(((gamma-sum(p^(-1),p=1..n2-1))*G(k2-1,n2)+ sum((Zeta(k2-i2)-sum(p^(-(k2-i2)), p=1..n2-1))*G(i2,n2),i2=0..k2-2))) od; od: EI:= evalf((-1)^m*((-x)^(n-1)/(n-1)!*sum(alpha(kz,n)*(G(m-2*kz,n)+sum(G(m-2*kz-i,n)*ln(x)^i/i!,i=1..m-2*kz)), kz=0..floor(m/2)) + sum((-x)^kx/((kx-n+1)^m*kx!),kx=0..n-2) + sum((-x)^ky/((ky-n+1)^m*ky!),ky=n..infinity))); return(EI): end:
  • Mathematica
    Join[{0}, RealDigits[ N[ EulerGamma^2/2 + Pi^2/12 - HypergeometricPFQ[{1, 1, 1}, {2, 2, 2}, -1], 104]][[1]]] (* Jean-François Alcover, Nov 07 2012, from 1st formula *)
  • PARI
    t=1; Euler^2/2 + Pi^2/12 + sumalt(k=1, t*=k; (-1)^k/(k^2*t)) \\ Charles R Greathouse IV, Nov 07 2016

Formula

E(x=1,m=2,n=1) = gamma^2/2 + Pi^2/12 + Sum_{k>=1} ((-1)^k/(k^2*k!)).
E(x=0,n,m) = (1/(n-1))^m for n >= 2.
Integral_{t=0..x} E(t,m,n) = 1/n^m - E(x,n,n+1).
dE(x,m,n+1)/dx = - E(x,m,n).
E(x,m,n+1) = (1/n)*(E(x,m-1,n+1) - x*E(x,m,n)).
E(x,m,n) = (-1)^m * ((-x)^(n-1)/(n-1)!) * Sum_{kz=0..floor(m/2)}(alpha (kz, n)*G(m-2*kz, n)) + (-1) ^m * ((-x)^(n-1)/(n-1)!) * Sum_{kz=0..floor(m/2)}(Sum_{i=1..m-2*kz}(alpha (kz, n) *G(m-2*kz-i, n)*log(x)^i/i!)) + (-1)^m * Sum_{ kx=0..n-2}((-x)^kx/((kx-n+1)^m*kx!) + (-1)^m * Sum_{ky>=n}((-x)^ky /(( ky-n+1)^m*ky!)).

A112302 Decimal expansion of quadratic recurrence constant sqrt(1 * sqrt(2 * sqrt(3 * sqrt(4 * ...)))).

Original entry on oeis.org

1, 6, 6, 1, 6, 8, 7, 9, 4, 9, 6, 3, 3, 5, 9, 4, 1, 2, 1, 2, 9, 5, 8, 1, 8, 9, 2, 2, 7, 4, 9, 9, 5, 0, 7, 4, 9, 9, 6, 4, 4, 1, 8, 6, 3, 5, 0, 2, 5, 0, 6, 8, 2, 0, 8, 1, 8, 9, 7, 1, 1, 1, 6, 8, 0, 2, 5, 6, 0, 9, 0, 2, 9, 8, 2, 6, 3, 8, 3, 7, 2, 7, 9, 0, 8, 3, 6, 9, 1, 7, 6, 4, 1, 1, 4, 6, 1, 1, 6, 7, 1, 5, 5, 2, 8
Offset: 1

Views

Author

Michael Somos, Sep 02 2005

Keywords

Comments

From Johannes W. Meijer, Jun 27 2016: (Start)
With Phi(z, p, q) the Lerch transcendent, define LP(n) = (1/n) * sum(Phi(1/2, n-k, 1) * LP(k), k=0..n-1), with LP(0) = 1. Conjecture: Lim_{n -> infinity} LP(n) = A112302.
For similar formulas, see A090998 and A135002. For background information, see A274181.
The structure of the n! * LP(n) formulas leads to the multinomial coefficients A036039. (End)

Examples

			1.6616879496335941212958189227499507499644186350250682081897111680...
		

References

  • S. R. Finch, Mathematical Constants, Cambridge University Press, Cambridge, 2003, p. 446.
  • S. Ramanujan, Collected Papers, Ed. G. H. Hardy et al., AMS Chelsea 2000. See Appendix I. p. 348.

Crossrefs

Programs

  • Mathematica
    RealDigits[ Fold[ N[ Sqrt[ #2*#1], 128] &, Sqrt@ 351, Reverse@ Range@ 350], 10, 111][[1]] (* Robert G. Wilson v, Nov 05 2010 *)
    Exp[-Derivative[1, 0][PolyLog][0, 1/2]] // RealDigits[#, 10, 105]& // First (* Jean-François Alcover, Apr 07 2014, after Jonathan Sondow *)
  • PARI
    {a(n) = if( n<-1, 0, n++; default( realprecision, n+2); floor( prodinf( k=1, k^2^-k)* 10^n) % 10)};
    
  • PARI
    prodinf(n=1,n^2^-n) \\ Charles R Greathouse IV, Apr 07 2013
    
  • Python
    from mpmath import polylog, diff, exp, mp
    mp.dps = 120
    somos_const = exp(-diff(lambda n: polylog(n, 1/2), 0))
    A112302 = [int(d) for d in mp.nstr(somos_const, n=mp.dps)[:-1] if d != '.']  # Jwalin Bhatt, Nov 23 2024

Formula

Equals Product_{n>=1} n^(1/2^n). - Jonathan Sondow, Apr 07 2013
Equals exp(A114124) = A188834/2 = sqrt(A259235). - Hugo Pfoertner, Nov 23 2024
From Jwalin Bhatt, Apr 02 2025: (Start)
Equals exp(-PolyLog'(0,1/2)), where PolyLog'(x,y) represents the derivative of the polylogarithm w.r.t. x.
Equals Product_{n>=1} (1+1/n)^(1/2^n).
Equals exp(Sum_{n>=2} log(n)/2^n).
Equals 2*exp(Sum_{n>=1} (log(1+1/n)-1/n)/2^n). (End)

A135002 Decimal expansion of 2/e.

Original entry on oeis.org

7, 3, 5, 7, 5, 8, 8, 8, 2, 3, 4, 2, 8, 8, 4, 6, 4, 3, 1, 9, 1, 0, 4, 7, 5, 4, 0, 3, 2, 2, 9, 2, 1, 7, 3, 4, 8, 9, 1, 6, 2, 2, 2, 6, 2, 0, 6, 3, 5, 3, 5, 6, 6, 9, 0, 1, 5, 6, 7, 3, 6, 0, 3, 3, 9, 4, 9, 2, 2, 9, 9, 1, 4, 8, 9, 7, 9, 9, 6
Offset: 0

Views

Author

Omar E. Pol, Nov 15 2007

Keywords

Comments

From Johannes W. Meijer, Jun 27 2016: (Start)
This constant is related to the values of zeta(2*n-1) of the Riemann zeta function and the Euler Mascheroni constant gamma. If we define Z(n) = (1/n) * (sum(zeta(2*n-2*k-1) * Z(k), k=0..n-2) + gamma * Z(n-1)), with Z(0) = 1, then limit(Z(n), n -> infinity) = 2/exp(1).
Similar formulas appear in A090998 and A112302.
The structure of the n! * Z(n) formulas leads to the multinomial coefficients A036039. (End).

Examples

			0.735758882342... = 2*A068985.
		

Crossrefs

Programs

Formula

Integral of log x from x = 1/e to e. - Charles R Greathouse IV, Apr 16 2015
Equals lim_{k->0} 2*(1 - k)^(1/k). - Ilya Gutkovskiy, Jun 27 2016
Equals Sum_{i>=0} ((-1)^i)(1-i)/i!. - Maciej Kaniewski, Sep 10 2017
Equals Sum_{i>=0} ((-1)^i)(i^2+2)/i!. - Maciej Kaniewski, Sep 12 2017
From Peter Bala, Mar 21 2022: (Start)
2/e = Integral_{x = 1..oo} (2*x/(1+x))^n*(x^2+x+1-n)/x^2*exp(-x) dx;
2/e = - Integral_{x = 0..1} (2*x/(1+x))^n*(x^2+x+1-n)/x^2*exp(-x) dx, both valid for n >= 2. (End)

A163927 Numerators of the higher order exponential integral constants alpha(k,4).

Original entry on oeis.org

1, 49, 1897, 69553, 2515513, 90663937, 3264855049, 117543378001, 4231639039705, 152339702576545, 5484235568128681, 197432536935184369, 7107571838026381177, 255872590744254526273, 9211413307971174616393
Offset: 0

Views

Author

Johannes W. Meijer and Nico Baken, Aug 13 2009, Aug 17 2009

Keywords

Comments

The higher order exponential integrals, see A163931, are defined by E(x,m,n) = x^(n-1)*Integral_{t>=x} E(t,m-1,n)/t^n for m >= 1 and n >= 1, with E(x,m=0,n) = exp(-x).
The series expansions of the higher order exponential integrals are dominated by the alpha(k,n) and the gamma(k,n) constants, see A090998.
The first Maple program uses the alpha(k,n) formula and the second the GF(z,n) to generate the alpha(k,n) coefficients in each column.
Appears to equal the numerator of the multiple harmonic (star) sum Sum_{1 <= k_1 <= ... <= k_n <= 3} 1/(k_1^2*...*k_n^2). If true, then a(n) = numerator( 3/2 - 3/(5*4^n) + 1/(10*9^n) ). - Peter Bala, Jan 31 2019

Examples

			a(k=0,n=4) = 1, a(k=1,4) = 49/36, a(k=2,4) = 1897/1296, a(k=3,4) = 69553/46656.
		

Crossrefs

Cf. A163931 (E(x,m,n)), A090998 (gamma(k,n)).
a(k,1) = A000007(k)
a(k,2) = A000012(k) = 1^k.
a(k,3) = A002450(k+1)/A000302(k) with A000302(k) = 4^k.
a(k,4) = A163927(k)/A009980(k) with A009980(k) = 36^k.
The GF(z,n) lead to A008955.
The denominators of a(1,n), n >= 2, lead to A007407.

Programs

  • Maple
    coln := 4; nmax := 15; kmax := nmax: k:=0: for n from 1 to nmax do alpha(k, n) := 1 od: for k from 1 to kmax do for n from 1 to nmax do alpha(k, n) := (1/k)*sum(sum(p^(-2*(k-i)), p=0..n-1)*alpha(i, n), i=0..k-1) od; od: seq(alpha(k, coln), k=0..nmax-1);
    # End program 1
    coln:=4; nmax1 := 16; for n from 0 to nmax1 do A008955(n, 0):=1 end do: for n from 0 to nmax1 do A008955(n, n) := (n!)^2 end do: for n from 1 to nmax1 do for m from 1 to n-1 do A008955(n, m) := A008955(n-1, m-1)*n^2 + A008955(n-1, m) end do: end do: m:=coln-1: f(m):=0: for n from 0 to m do f(m) := f(m) + (-1)^(n + m)*A008955(m, n)*z^(2*m-2*n) od: GF(z,coln) := m!^2/f(m): GF(z,coln):=series(GF(z,coln), z, nmax1);
    # End program 2

Formula

alpha(k,n) = (1/k) * Sum_{i=0..k-1} (Sum_{p=0..n-1}(p^(2*i-2*k))*alpha(i, n)) with alpha(0,n) = 1, k >= 0 and n >= 1.
alpha(k,n) = alpha(k,n+1) -alpha(k-1,n+1)/n^2.
GF(z,n) = product((1-(z/k)^2)^(-1), k = 1..n-1) = (Pi*z/sin(Pi*z))/(Beta(n+z,n-z)/Beta(n,n)).

A274760 The multinomial transform of A001818(n) = ((2*n-1)!!)^2.

Original entry on oeis.org

1, 1, 10, 478, 68248, 21809656, 13107532816, 13244650672240, 20818058883902848, 48069880140604832128, 156044927762422185270016, 687740710497308621254625536, 4000181720339888446834235653120, 29991260979682976913756629498334208
Offset: 0

Views

Author

Johannes W. Meijer, Jul 27 2016

Keywords

Comments

The multinomial transform [MNL] transforms an input sequence b(n) into the output sequence a(n). Given the fact that the structure of the a(n) formulas, see the examples, lead to the multinomial coefficients A036039 the MNL transform seems to be an appropriate name for this transform. The multinomial transform is related to the exponential transform, see A274804 and the third formula. For the inverse multinomial transform [IML] see A274844.
To preserve the identity IML[MNL[b(n)]] = b(n) for n >= 0 for a sequence b(n) with offset 0 the shifted sequence b(n-1) with offset 1 has to be used as input for the MNL, otherwise information about b(0) will be lost in transformation.
In the a(n) formulas, see the examples, the multinomial coefficients A036039 appear.
We observe that a(0) = 1 and that this term provides no information about any value of b(n), this notwithstanding we will start the a(n) sequence with a(0) = 1.
The Maple programs can be used to generate the multinomial transform of a sequence. The first program uses the first formula which was found by Paul D. Hanna, see A158876, and Vladimir Kruchinin, see A215915. The second program uses properties of the e.g.f., see the sequences A158876, A213507, A244430 and A274539 and the third formula. The third program uses information about the inverse multinomial transform, see A274844.
Some MNL transform pairs are, n >= 1: A000045(n) and A244430(n-1); A000045(n+1) and A213527(n-1); A000108(n) and A213507(n-1); A000108(n-1) and A243953(n-1); A000142(n) and A158876(n-1); A000203(n) and A053529(n-1); A000110(n) and A274539(n-1); A000041(n) and A215915(n-1); A000035(n-1) and A177145(n-1); A179184(n) and A038205(n-1); A267936(n) and A000266(n-1); A267871(n) and A000090(n-1); A193356(n) and A088009(n-1).

Examples

			Some a(n) formulas, see A036039:
  a(0) = 1
  a(1) = 1*x(1)
  a(2) = 1*x(2) + 1*x(1)^2
  a(3) = 2*x(3) + 3*x(1)*x(2) + 1*x(1)^3
  a(4) = 6*x(4) + 8*x(1)*x(3) + 3*x(2)^2 + 6*x(1)^2*x(2) + 1*x(1)^4
  a(5) = 24*x(5) + 30*x(1)*x(4) + 20*x(2)*x(3) + 20*x(1)^2*x(3) + 15*x(1)*x(2)^2 + 10*x(1)^3*x(2) + 1*x(1)^5
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.

Crossrefs

Programs

  • Maple
    nmax:= 13: b := proc(n): (doublefactorial(2*n-1))^2 end: a:= proc(n) option remember: if n=0 then 1 else add(((n-1)!/(n-k)!) * b(k) * a(n-k), k=1..n) fi: end: seq(a(n), n = 0..nmax); # End first MNL program.
    nmax:=13: b := proc(n): (doublefactorial(2*n-1))^2 end: t1 := exp(add(b(n)*x^n/n, n = 1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n!*coeff(t2, x, n) end: seq(a(n), n = 0..nmax); # End second MNL program.
    nmax:=13: b := proc(n): (doublefactorial(2*n-1))^2 end: f := series(log(1+add(s(n)*x^n/n!, n=1..nmax)), x, nmax+1): d := proc(n): n*coeff(f, x, n) end: a(0) := 1: a(1) := b(1): s(1) := b(1): for n from 2 to nmax do s(n) := solve(d(n)-b(n), s(n)): a(n):=s(n): od: seq(a(n), n=0..nmax); # End third MNL program.
  • Mathematica
    b[n_] := (2*n - 1)!!^2;
    a[0] = 1; a[n_] := a[n] = Sum[((n-1)!/(n-k)!)*b[k]*a[n-k], {k, 1, n}];
    Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Nov 17 2017 *)

Formula

a(n) = Sum_{k=1..n} ((n-1)!/(n-k)!)*b(k)*a(n-k), n >= 1 and a(0) = 1, with b(n) = A001818(n) = ((2*n-1)!!)^2.
a(n) = n!*P(n), with P(n) = (1/n)*(Sum_{k=0..n-1} b(n-k)*P(k)), n >= 1 and P(0) = 1, with b(n) = A001818(n) = ((2*n-1)!!)^2.
E.g.f.: exp(Sum_{n >= 1} b(n)*x^n/n) with b(n) = A001818(n) = ((2*n-1)!!)^2.
denom(a(n)/2^n) = A001316(n); numer(a(n)/2^n) = [1, 1, 5, 239, 8531, 2726207, ...].

A070860 Decimal expansion of Pi^2/12 - gamma^2 /2.

Original entry on oeis.org

6, 5, 5, 8, 7, 8, 0, 7, 1, 5, 2, 0, 2, 5, 3, 8, 8, 1, 0, 7, 7, 0, 1, 9, 5, 1, 5, 1, 4, 5, 3, 9, 0, 4, 8, 1, 2, 7, 9, 7, 6, 6, 3, 8, 0, 4, 7, 8, 5, 8, 4, 3, 4, 7, 2, 9, 2, 3, 6, 2, 4, 4, 5, 6, 8, 3, 8, 7, 0, 8, 3, 8, 3, 5, 3, 7, 2, 2, 1, 0, 2, 0, 8, 6, 1, 8, 2, 8, 1, 5, 9, 9, 4, 0, 2, 1, 3, 6, 4, 0, 0, 0, 4, 8
Offset: 0

Views

Author

Benoit Cloitre, May 24 2003

Keywords

Comments

This is erroneously computed as the linear term in the Laurent expansion of Gamma(x) = 1/x +c(0) + c(1)*x+ O(x^2) on page 135 of the Patterson book. The correct value of c(1) is A090998. - R. J. Mathar, Jul 11 2025

Examples

			0.65587807152025388107701951514539048127976638047858434729236244568387...
		

Programs

  • Magma
    R:= RealField(100); (Pi(R)^2 - 6*EulerGamma(R)^2)/12; // G. C. Greubel, Sep 05 2018
  • Mathematica
    RealDigits[(Zeta[2] - EulerGamma^2)/2, 10, 100][[1]] (* G. C. Greubel, Sep 05 2018 *)
  • PARI
    -(Euler^2-zeta(2))/2
    

Formula

(EulerGamma^2 - zeta(2))/2 = -0.65587807152025388....
Equals A072691 - A155969/2.

A163928 Numerators of the higher order exponential integral constants alpha(2,n).

Original entry on oeis.org

0, 1, 21, 1897, 32197, 20881861, 7139587, 17462165587, 283355376967, 69621962857381, 70246946681461, 1036088178214798501, 1042504974775473001, 29931734181763981573561, 4295332813075795410223, 4312254507400142830831
Offset: 1

Views

Author

Johannes W. Meijer & Nico Baken, Aug 13 2009, Aug 17 2009

Keywords

Comments

See A163927 for information about the alpha(k,n) constants.
Apart from a difference of offset, alpha(2,n) appears to be the multiple harmonic (star) sum Sum_{j = 1..n} 1/j^2 Sum_{k = 1..j} 1/k^2, which has the initial values [1, 21/16, 1897/1296, 32197/20736, 20881861/12960000, 7139587/4320000, ...]. - Peter Bala, Jan 31 2019

Examples

			alpha(k=2,n=1) = 0, alpha(k=2,2) = 1, alpha(k=2,3) = 21/16, alpha(k=2,4) = 1897/1296.
		

Crossrefs

Cf. A163929 (denominators).
Cf. A163927 (alpha(k,n)) and A090998 (gamma(k,n)).

Programs

  • Maple
    nmax:=17; rowk:=2; kmax:=nmax: k:=0: for n from 1 to nmax do alpha(k,n):=1 od: for k from 1 to kmax do for n from 1 to nmax do alpha(k,n) := (1/k)*sum(sum(p^(-2*(k-i)),p=0..n-1)*alpha(i, n),i=0..k-1) od; od: seq(alpha(rowk, n),n=1..nmax);

Formula

alpha(k,n) = (1/k)*Sum_{i=0..k-1} (Sum_{p=0..n-1} p^(-2*(k-i))*alpha(i, n) with alpha(0,n) = 1, with k = 2 and n >= 1. alpha(1,n) = A007406(n-1)/A007407(n-1) for n >= 2.

A385960 Decimal expansion of the absolute value of the coefficient [x^2] Gamma(x).

Original entry on oeis.org

9, 0, 7, 4, 7, 9, 0, 7, 6, 0, 8, 0, 8, 8, 6, 2, 8, 9, 0, 1, 6, 5, 6, 0, 1, 6, 7, 3, 5, 6, 2, 7, 5, 1, 1, 4, 9, 2, 8, 6, 1, 1, 4, 4, 9, 0, 7, 2, 5, 6, 3, 7, 6, 0, 9, 4, 1, 3, 3, 1, 1, 5, 4, 0, 5, 0, 4, 6, 5, 1, 8, 2, 3, 7, 2, 2, 3, 0, 6, 9, 3, 9, 8, 3, 8, 7, 5, 2, 7, 4, 1, 1, 3, 6, 2, 9, 7, 7, 2, 1, 6, 8, 2, 1
Offset: 0

Views

Author

R. J. Mathar, Jul 13 2025

Keywords

Comments

The Laurent series Gamma(x) = 1/x + Sum_{i>=0} a_i x^i starts with a_0 = -gamma = -A001620, a_1 = A090998 , and a_2 = -0.90747907.. , absolute value here. Recurrence (i+1)*a_i = -gamma *a_{i-1} + Sum_{k=2..i+1} (-1)^k*zeta(k)a_{i-k} .

Examples

			0.9074790760808862890165601673...
		

Crossrefs

Cf. A090998 [x^1], A385961 [x^3], A385962 [x^4].

Programs

  • Maple
    (gamma^3+3*gamma*Zeta(2)+2*Zeta(3))/6 ; evalf(%) ;
  • PARI
    polcoef(gamma(x), 2) \\ Michel Marcus, Jul 13 2025

Formula

Equals (gamma^3 +3*gamma*zeta(2) +2*zeta(3))/6 , gamma = A001620, zeta(2) = A013661, zeta(3)=A002117.

A385961 Decimal expansion of the value of the coefficient [x^3] Gamma(x).

Original entry on oeis.org

9, 8, 1, 7, 2, 8, 0, 8, 6, 8, 3, 4, 4, 0, 0, 1, 8, 7, 3, 3, 6, 3, 8, 0, 2, 9, 4, 0, 2, 1, 8, 5, 0, 8, 5, 0, 3, 6, 0, 5, 7, 3, 6, 7, 9, 7, 2, 3, 4, 6, 5, 4, 1, 5, 4, 0, 4, 9, 5, 7, 4, 5, 5, 5, 9, 3, 8, 5, 6, 8, 3, 9, 2, 4, 8, 6, 9, 3, 4, 5, 0, 9, 4, 1, 0, 5, 9, 7, 7, 0, 5, 1, 8, 7, 5, 7, 0, 6, 5, 9, 5, 5, 8, 8, 5, 0, 6, 7, 0, 4, 3, 6, 8, 2
Offset: 0

Views

Author

R. J. Mathar, Jul 13 2025

Keywords

Comments

The Laurent series Gamma(x) = 1/x + Sum_{i>=0} a_i x^i starts with a_0 = -gamma = -A001620, a_1 = A090998 . a_3 = 0.9817280868.. is here.

Examples

			0.981728086834400187336380294021850...
		

Crossrefs

Cf. A090998 [x^1], A385960 [x^2], A385962 [x^4].

Programs

  • Maple
    (gamma^4+6*gamma^2*Zeta(2)+8*gamma*Zeta(3)+3*Zeta(2)^2+6*Zeta(4))/24 ; evalf(%) ;

Formula

Equals (gamma^4 +6*gamma^2*zeta(2) +8*gamma*zeta(3) +3*zeta(2)^2 +6*zeta(4))/24 , gamma = A001620, zeta(2) = A013661, zeta(3)=A002117, zeta(4) = A013662.
Showing 1-10 of 11 results. Next