A163930 Duplicate of A090998.
9, 8, 9, 0, 5, 5, 9, 9, 5, 3, 2, 7, 9, 7, 2, 5, 5, 5, 3, 9, 5, 3, 9, 5, 6, 5, 1, 5, 0, 0, 6, 3, 4, 7, 0, 7, 9, 3, 9, 1, 8, 3, 5, 2, 0, 7, 2, 8, 2, 1, 4, 0, 9, 0, 4, 4, 3, 1, 9, 5, 7, 8, 3, 6, 8, 6, 1, 3, 6, 6, 3, 2, 0, 4, 9, 4, 7, 8, 7, 7, 1, 7, 4, 7, 4, 4, 6, 0, 8, 4, 6, 2, 5, 7, 3, 7, 3, 4, 1, 3, 0, 3, 5, 2
Offset: 0
Keywords
Examples
G(2,1) = 0.9890559953279725553953956515...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- J. W. Meijer and N. H. G. Baken, The Exponential Integral Distribution, Statistics and Probability Letters, Volume 5, No.3, April 1987. pp 209-211.
Crossrefs
Programs
-
Maple
ncol:=1; nmax:=5; kmax:=nmax; for n from 1 to nmax do G(0,n):=1 od: for n from 1 to nmax do for k from 1 to kmax do G(k,n):= expand((1/k)*((gamma-sum(p^(-1),p=1..n-1))* G(k-1,n)+sum((Zeta(k-i)-sum(p^(-(k-i)),p=1..n-1))*G(i,n),i=0..k-2))) od; od: for k from 0 to kmax do G(k,ncol):=G(k,ncol) od;
-
Mathematica
RealDigits[ N[ EulerGamma^2/2 + Pi^2/12, 105]][[1]] (* Jean-François Alcover, Nov 07 2012, from 1st formula *)
Formula
G(2,1) = gamma(2,1) = gamma^2/2+Pi^2/12.
G(k,n) = (1/k)*(gamma*G(k-1,n)) - (1/k)*Sum_{p=1..n-1}(p^(-1))* G(k-1,n) + (1/k)* Sum_{i=0..k-2}(Zeta(k-i) * G(i,n)) - (1/k)*Sum_{i=0..k-2}(Sum_{p=1..n-1}(p^(i-k)) * G(i,n)) with G(0,n) = 1 for k>=0 and n>=1.
G(k,n+1) = G(k,n) -G(k-1,n)/n.
GF(z,n) = GAMMA(n-z)/GAMMA(n).
Comments