cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A112302 Decimal expansion of quadratic recurrence constant sqrt(1 * sqrt(2 * sqrt(3 * sqrt(4 * ...)))).

Original entry on oeis.org

1, 6, 6, 1, 6, 8, 7, 9, 4, 9, 6, 3, 3, 5, 9, 4, 1, 2, 1, 2, 9, 5, 8, 1, 8, 9, 2, 2, 7, 4, 9, 9, 5, 0, 7, 4, 9, 9, 6, 4, 4, 1, 8, 6, 3, 5, 0, 2, 5, 0, 6, 8, 2, 0, 8, 1, 8, 9, 7, 1, 1, 1, 6, 8, 0, 2, 5, 6, 0, 9, 0, 2, 9, 8, 2, 6, 3, 8, 3, 7, 2, 7, 9, 0, 8, 3, 6, 9, 1, 7, 6, 4, 1, 1, 4, 6, 1, 1, 6, 7, 1, 5, 5, 2, 8
Offset: 1

Views

Author

Michael Somos, Sep 02 2005

Keywords

Comments

From Johannes W. Meijer, Jun 27 2016: (Start)
With Phi(z, p, q) the Lerch transcendent, define LP(n) = (1/n) * sum(Phi(1/2, n-k, 1) * LP(k), k=0..n-1), with LP(0) = 1. Conjecture: Lim_{n -> infinity} LP(n) = A112302.
For similar formulas, see A090998 and A135002. For background information, see A274181.
The structure of the n! * LP(n) formulas leads to the multinomial coefficients A036039. (End)

Examples

			1.6616879496335941212958189227499507499644186350250682081897111680...
		

References

  • S. R. Finch, Mathematical Constants, Cambridge University Press, Cambridge, 2003, p. 446.
  • S. Ramanujan, Collected Papers, Ed. G. H. Hardy et al., AMS Chelsea 2000. See Appendix I. p. 348.

Crossrefs

Programs

  • Mathematica
    RealDigits[ Fold[ N[ Sqrt[ #2*#1], 128] &, Sqrt@ 351, Reverse@ Range@ 350], 10, 111][[1]] (* Robert G. Wilson v, Nov 05 2010 *)
    Exp[-Derivative[1, 0][PolyLog][0, 1/2]] // RealDigits[#, 10, 105]& // First (* Jean-François Alcover, Apr 07 2014, after Jonathan Sondow *)
  • PARI
    {a(n) = if( n<-1, 0, n++; default( realprecision, n+2); floor( prodinf( k=1, k^2^-k)* 10^n) % 10)};
    
  • PARI
    prodinf(n=1,n^2^-n) \\ Charles R Greathouse IV, Apr 07 2013
    
  • Python
    from mpmath import polylog, diff, exp, mp
    mp.dps = 120
    somos_const = exp(-diff(lambda n: polylog(n, 1/2), 0))
    A112302 = [int(d) for d in mp.nstr(somos_const, n=mp.dps)[:-1] if d != '.']  # Jwalin Bhatt, Nov 23 2024

Formula

Equals Product_{n>=1} n^(1/2^n). - Jonathan Sondow, Apr 07 2013
Equals exp(A114124) = A188834/2 = sqrt(A259235). - Hugo Pfoertner, Nov 23 2024
From Jwalin Bhatt, Apr 02 2025: (Start)
Equals exp(-PolyLog'(0,1/2)), where PolyLog'(x,y) represents the derivative of the polylogarithm w.r.t. x.
Equals Product_{n>=1} (1+1/n)^(1/2^n).
Equals exp(Sum_{n>=2} log(n)/2^n).
Equals 2*exp(Sum_{n>=1} (log(1+1/n)-1/n)/2^n). (End)

A244009 Decimal expansion of 1 - log(2).

Original entry on oeis.org

3, 0, 6, 8, 5, 2, 8, 1, 9, 4, 4, 0, 0, 5, 4, 6, 9, 0, 5, 8, 2, 7, 6, 7, 8, 7, 8, 5, 4, 1, 8, 2, 3, 4, 3, 1, 9, 2, 4, 4, 9, 9, 8, 6, 5, 6, 3, 9, 7, 4, 4, 7, 4, 5, 8, 7, 9, 3, 1, 9, 9, 9, 0, 5, 0, 6, 6, 0, 6, 3, 7, 8, 0, 3, 0, 3, 0, 5, 2, 8, 4, 3, 9, 4, 1, 3, 6, 6, 7, 3, 0, 0, 3, 5, 8, 1, 3, 1, 2, 4, 5, 7, 9, 9, 8, 5
Offset: 0

Views

Author

Keywords

Comments

Fraction of numbers which are sqrt-smooth, see A048098 and A063539. - Charles R Greathouse IV, Jul 14 2014
Asymptotic survival probability in the 100 prisoners problem. - Alois P. Heinz, Jul 08 2022

Examples

			0.30685281944005469058276787854...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3, pp. 43-44.

Crossrefs

Essentially the same digits as A239354.

Programs

  • Maple
    f:= sum(1/(2*k*(2*k+1)), k=1..infinity):
    s:= convert(evalf(f, 140), string):
    seq(parse(s[i+1]), i=1..106);  # Alois P. Heinz, Jun 17 2014
  • Mathematica
    RealDigits[1-Log[2],10,120][[1]] (* Harvey P. Dale, Sep 23 2016 *)
  • PARI
    1-log(2) \\ Charles R Greathouse IV, Jul 14 2014

Formula

Equals Sum_{k>=0} 1/(2*k*(2*k+1)) = A239354 + 1/4 = A188859/2.
From Amiram Eldar, Aug 07 2020: (Start)
Equals Sum_{k>=1} 1/(k*(k+1)*2^k) = Sum_{k>=2} 1/A100381(k).
Equals Sum_{k>=2} (-1)^k * zeta(k)/2^k.
Equals Integral_{x=1..oo} 1/(x^2 + x^3) dx. (End)
Equals log(e/2) = log(A019739) = -log(2/e) = -log(A135002). - Wolfdieter Lang, Mar 04 2022
Equals lim_{n->oo} A024168(n)/n!. - Alois P. Heinz, Jul 08 2022
Equals 1/(4 - 4/(7 - 12/(10 - ... - 2*n*(n-1)/((3*n+1) - ...)))) (an equivalent continued fraction for 1 - log(2) was conjectured by the Ramanujan machine). - Peter Bala, Mar 04 2024
Equals Sum_{k>=1} zeta(2*k)/((2*k + 1)*2^(2*k-1)) (see Finch). - Stefano Spezia, Nov 02 2024

A182987 Least a + b such that a*b = A002110(n), the product of the first n primes, where a, b are positive integers.

Original entry on oeis.org

2, 3, 5, 11, 29, 97, 347, 1429, 6229, 29873, 160879, 895681, 5448239, 34885673, 228759799, 1568299433, 11417382973, 87698582693, 684947829299, 5606539600699, 47241542381273, 403631914511993, 3587558929043927, 32684217334524347, 308342289648328511, 3036819365023723883
Offset: 0

Views

Author

Risto Kauppila, Feb 06 2011

Keywords

Comments

Original definition (not applicable for n = 0 and 1, but equivalent for n >= 2):
Let p(S) be product of integers in S. a(n) is minimum of p(S_1) + p(S_2) over all partitions of first n primes into sets S_1 and S_2.
Also: Least integer such that a(n)^2 - 4*A002110(n) is a square. - David Broadhurst, Sep 20 2011
The integers a,b are the two median divisors of primorial(n), a = A060795(n) = A060775(A002110(n)) and b = A060796(n) = A033677(A002110(n)). (For n = 0, a = b = 1 of course.) - M. F. Hasler, Sep 20 2011

Examples

			a(3) = 11 = min{ 2*3 + 5 = 11, 2*5 + 3 = 13, 3*5 + 2 = 17 }
Or, a(3) = 11 = min { 1+30, 2+15, 3+10, 5+6 } because A002110(3) = 2*3*5 = 30 = 2*15 = 3*10 = 5*6.
		

Crossrefs

Cf. A000196 (integer sqrt), A002110 (primorial), A010052 (is_square).

Programs

  • Mathematica
    a[0] = 2; a[n_] := Module[{m = Times @@ Prime[Range[n]]}, For[an = 2 Floor[Sqrt[m]] + 1, an <= m + 2, an += 2, If[IntegerQ[Sqrt[an^2 - 4 m]], Return[an]]]]; Table[an = a[n]; Print[an]; an, {n, 0, 25}] (* Jean-François Alcover, Oct 20 2016, adapted from PARI *)
  • PARI
    A182987(n)={if(n,vecsum(divisors(vecprod(primes(n)))[2^(n-1)..2^(n-1)+1]),2)}  \\ Needs stack size >= 2^(n+6). - M. F. Hasler, Sep 20 2011, edited Mar 24 2022
    
  • PARI
    A182987(n)={ n||return(2); my(m=prod(k=1,n,prime(k))); forstep(a=2*sqrtint(m)+1,m+2,2, issquare(a^2-4*m) & return(a)) }  \\ Slow for n >= 28, but needs not much memory. - M. F. Hasler, following an idea from David Broadhurst, Sep 20 2011
    
  • Python
    def A182987(n): # becomes slow for n >= 28, but not slower than memory-hungry
       # sum(divisors(primorial(n))[2**(n-1)-1:2**(n-1)+1]) if n else 2
       "Compute A182987(n) = sum of the two central divisors of primorial(n)."
       if n < 2: return n+2
       from math import isqrt # = A000196
       from sympy import primorial # = A002110
       from sympy.ntheory.primetest import is_square # = A010052
       m = primorial(n)*4; a = isqrt(m)|1  ### ceil(sqrt(m))**2 < m  for n = 26..27 !!
       while True:
          if is_square(a*a - m): return a
          a += 2
    # M. F. Hasler, Mar 21 2022

Formula

a(n) = A060795(n) + A060796(n). - M. F. Hasler, Sep 20 2011
Conjecture: Limit_{N->oo} (Sum_{n=1..N} log(a(n)-2*sqrt(prime(n)#))) / (Sum_{n=1..N} prime(n)) = 2/e - 1/2 (i.e., A135002 - 1/2). - Alain Rocchelli, Nov 30 2023

Extensions

First term and example corrected, as empty sets have product 1, by Phil Carmody, Sep 20 2011
Simpler definition and extension to n = 0 by M. F. Hasler, Sep 20 2011
b-file extended to a(59) with results from R. Gerbicz (cf. 2nd Broadhurst link) by M. F. Hasler, Mar 22 2022
a(60)-a(70) in b-file from Max Alekseyev, Apr 20 2022

A274760 The multinomial transform of A001818(n) = ((2*n-1)!!)^2.

Original entry on oeis.org

1, 1, 10, 478, 68248, 21809656, 13107532816, 13244650672240, 20818058883902848, 48069880140604832128, 156044927762422185270016, 687740710497308621254625536, 4000181720339888446834235653120, 29991260979682976913756629498334208
Offset: 0

Views

Author

Johannes W. Meijer, Jul 27 2016

Keywords

Comments

The multinomial transform [MNL] transforms an input sequence b(n) into the output sequence a(n). Given the fact that the structure of the a(n) formulas, see the examples, lead to the multinomial coefficients A036039 the MNL transform seems to be an appropriate name for this transform. The multinomial transform is related to the exponential transform, see A274804 and the third formula. For the inverse multinomial transform [IML] see A274844.
To preserve the identity IML[MNL[b(n)]] = b(n) for n >= 0 for a sequence b(n) with offset 0 the shifted sequence b(n-1) with offset 1 has to be used as input for the MNL, otherwise information about b(0) will be lost in transformation.
In the a(n) formulas, see the examples, the multinomial coefficients A036039 appear.
We observe that a(0) = 1 and that this term provides no information about any value of b(n), this notwithstanding we will start the a(n) sequence with a(0) = 1.
The Maple programs can be used to generate the multinomial transform of a sequence. The first program uses the first formula which was found by Paul D. Hanna, see A158876, and Vladimir Kruchinin, see A215915. The second program uses properties of the e.g.f., see the sequences A158876, A213507, A244430 and A274539 and the third formula. The third program uses information about the inverse multinomial transform, see A274844.
Some MNL transform pairs are, n >= 1: A000045(n) and A244430(n-1); A000045(n+1) and A213527(n-1); A000108(n) and A213507(n-1); A000108(n-1) and A243953(n-1); A000142(n) and A158876(n-1); A000203(n) and A053529(n-1); A000110(n) and A274539(n-1); A000041(n) and A215915(n-1); A000035(n-1) and A177145(n-1); A179184(n) and A038205(n-1); A267936(n) and A000266(n-1); A267871(n) and A000090(n-1); A193356(n) and A088009(n-1).

Examples

			Some a(n) formulas, see A036039:
  a(0) = 1
  a(1) = 1*x(1)
  a(2) = 1*x(2) + 1*x(1)^2
  a(3) = 2*x(3) + 3*x(1)*x(2) + 1*x(1)^3
  a(4) = 6*x(4) + 8*x(1)*x(3) + 3*x(2)^2 + 6*x(1)^2*x(2) + 1*x(1)^4
  a(5) = 24*x(5) + 30*x(1)*x(4) + 20*x(2)*x(3) + 20*x(1)^2*x(3) + 15*x(1)*x(2)^2 + 10*x(1)^3*x(2) + 1*x(1)^5
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.

Crossrefs

Programs

  • Maple
    nmax:= 13: b := proc(n): (doublefactorial(2*n-1))^2 end: a:= proc(n) option remember: if n=0 then 1 else add(((n-1)!/(n-k)!) * b(k) * a(n-k), k=1..n) fi: end: seq(a(n), n = 0..nmax); # End first MNL program.
    nmax:=13: b := proc(n): (doublefactorial(2*n-1))^2 end: t1 := exp(add(b(n)*x^n/n, n = 1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n!*coeff(t2, x, n) end: seq(a(n), n = 0..nmax); # End second MNL program.
    nmax:=13: b := proc(n): (doublefactorial(2*n-1))^2 end: f := series(log(1+add(s(n)*x^n/n!, n=1..nmax)), x, nmax+1): d := proc(n): n*coeff(f, x, n) end: a(0) := 1: a(1) := b(1): s(1) := b(1): for n from 2 to nmax do s(n) := solve(d(n)-b(n), s(n)): a(n):=s(n): od: seq(a(n), n=0..nmax); # End third MNL program.
  • Mathematica
    b[n_] := (2*n - 1)!!^2;
    a[0] = 1; a[n_] := a[n] = Sum[((n-1)!/(n-k)!)*b[k]*a[n-k], {k, 1, n}];
    Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Nov 17 2017 *)

Formula

a(n) = Sum_{k=1..n} ((n-1)!/(n-k)!)*b(k)*a(n-k), n >= 1 and a(0) = 1, with b(n) = A001818(n) = ((2*n-1)!!)^2.
a(n) = n!*P(n), with P(n) = (1/n)*(Sum_{k=0..n-1} b(n-k)*P(k)), n >= 1 and P(0) = 1, with b(n) = A001818(n) = ((2*n-1)!!)^2.
E.g.f.: exp(Sum_{n >= 1} b(n)*x^n/n) with b(n) = A001818(n) = ((2*n-1)!!)^2.
denom(a(n)/2^n) = A001316(n); numer(a(n)/2^n) = [1, 1, 5, 239, 8531, 2726207, ...].

A274540 Decimal expansion of exp(sqrt(2)).

Original entry on oeis.org

4, 1, 1, 3, 2, 5, 0, 3, 7, 8, 7, 8, 2, 9, 2, 7, 5, 1, 7, 1, 7, 3, 5, 8, 1, 8, 1, 5, 1, 4, 0, 3, 0, 4, 5, 0, 2, 4, 0, 1, 6, 6, 3, 9, 4, 3, 1, 5, 1, 1, 0, 9, 6, 1, 0, 0, 6, 8, 3, 6, 4, 7, 0, 9, 8, 5, 1, 5, 0, 9, 7, 8, 5, 8, 3, 0, 8, 0, 7, 3, 2, 7, 9, 1, 6, 5, 0
Offset: 1

Views

Author

Johannes W. Meijer, Jun 27 2016

Keywords

Comments

Define P(n) = (1/n)*Sum_{k=0..n-1} x(n-k)*P(k) for n >= 1, and P(0) = 1, with x(q) = C1 and x(n) = 1 for all other n. We find that C2 = lim_{n -> infinity} P(n) = exp((C1-1)/q).
The structure of the n!*P(n) formulas leads to the multinomial coefficients A036039.
Some transform pairs: C1 = A002162 (log(2)) and C2 = A135002 (2/exp(1)); C1 = A016627 (log(4)) and C2 = A135004 (4/exp(1)); C1 = A001113 (exp(1)) and C2 = A234473 (exp(exp(1)-1)).
From Peter Bala, Oct 23 2019: (Start)
The constant is irrational: Henry Cohn gives the following proof in Todd and Vishals Blog - "By the way, here's my favorite application of the tanh continued fraction: exp(sqrt(2)) is irrational.
Consider sqrt(2)*(exp(sqrt(2))-1)/(exp(sqrt(2))+1). If exp(sqrt(2)) were rational, or even in Q(sqrt(2)), then this expression would be in Q(sqrt(2)). However, it is sqrt(2)*tanh(1/sqrt(2)), and the tanh continued fraction shows that this equals [0,1,6,5,14,9,22,13,...]. If it were in Q(sqrt(2)), it would have a periodic simple continued fraction expansion, but it doesn't." (End)

Examples

			c = 4.113250378782927517173581815140304502401663943151...
		

Crossrefs

Programs

  • Maple
    Digits := 80: evalf(exp(sqrt(2))); # End program 1.
    P := proc(n) : if n=0 then 1 else P(n) := expand((1/n)*(add(x(n-k)*P(k), k=0..n-1))) fi; end: x := proc(n): if n=1 then (1 + sqrt(2)) else 1 fi: end: Digits := 49; evalf(P(120)); # End program 2.
  • Mathematica
    First@ RealDigits@ N[Exp[Sqrt@ 2], 80] (* Michael De Vlieger, Jun 27 2016 *)
  • PARI
    my(x=exp(sqrt(2))); for(k=1, 100, my(d=floor(x)); x=(x-d)*10; print1(d, ", ")) \\ Felix Fröhlich, Jun 27 2016

Formula

c = exp(sqrt(2)).
c = lim_{n -> infinity} P(n) with P(n) = (1/n)*Sum_{k=0..n-1} x(n-k)*P(k) for n >= 1, and P(0) = 1, with x(1) = (1 + sqrt(2)), the silver mean A014176, and x(n) = 1 for all other n.

Extensions

More terms from Jon E. Schoenfield, Mar 15 2018

A334397 Decimal expansion of (e - 2)/e.

Original entry on oeis.org

2, 6, 4, 2, 4, 1, 1, 1, 7, 6, 5, 7, 1, 1, 5, 3, 5, 6, 8, 0, 8, 9, 5, 2, 4, 5, 9, 6, 7, 7, 0, 7, 8, 2, 6, 5, 1, 0, 8, 3, 7, 7, 7, 3, 7, 9, 3, 6, 4, 6, 4, 3, 3, 0, 9, 8, 4, 3, 2, 6, 3, 9, 6, 6, 0, 5, 0, 7, 7, 0, 0, 8, 5, 1, 0, 2, 0, 0, 3, 9, 3, 2, 8, 5, 7, 0, 5, 4, 5
Offset: 0

Views

Author

Daniel Hoyt, Apr 26 2020

Keywords

Examples

			0.2642411176571153568089524596770782651...
		

Crossrefs

Programs

Formula

Equals Integral_{x=0..1} x/e^x dx.
Equals 1 - A135002.
Equals 1/A309419.
Equals -Integral_{x=0..1, y=0..1} x*y/(exp(x*y)*log(x*y)) dx dy. (Apply Theorem 1 or Theorem 2 of Glasser (2019) to the above integral.) - Petros Hadjicostas, Jun 30 2020
From Amiram Eldar, Aug 05 2020: (Start)
Equals Sum_{k>=0} (-1)^k/(k! * (k+2)).
Equals Sum_{k>=1} 1/((2*k)! * (k+1)).
Equals Sum_{k>=1} (-1)^k * k^2 * H(k)/k!, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. (End)

A135004 Decimal expansion of 4/e.

Original entry on oeis.org

1, 4, 7, 1, 5, 1, 7, 7, 6, 4, 6, 8, 5, 7, 6, 9, 2, 8, 6, 3, 8, 2, 0, 9, 5, 0, 8, 0, 6, 4, 5, 8, 4, 3, 4, 6, 9, 7, 8, 3, 2, 4, 4, 5, 2, 4, 1, 2, 7, 0, 7, 1, 3, 3, 8, 0, 3, 1, 3, 4, 7, 2, 0, 6, 7, 8, 9, 8, 4, 5, 9, 8, 2, 9, 7, 9, 5, 9, 9, 2, 1, 3, 4, 2, 8, 5, 8, 9, 0, 9, 7, 3, 8, 3, 6, 7, 8, 5, 7, 4, 9, 8, 6, 5, 0, 9, 3, 0, 1, 1, 0, 7, 3, 7, 5, 9, 8, 0, 8, 3
Offset: 1

Views

Author

Omar E. Pol, Nov 15 2007

Keywords

Comments

Leading coefficient of energy difference between the two lowest states of the hydrogen molecular ion (see Holstein-Herring Method link). - Andrea Pinos, Nov 22 2023

Examples

			1.471517764685769...
		

Crossrefs

Cf. A019741 (e/4), A068985 (1/e), A135002 (2/e).

Programs

Formula

Equals lim_{n->oo} (((2*n)!/n!)^(1/n))/n (Godin, 2012). - Amiram Eldar, Apr 02 2022

Extensions

More terms from Harvey P. Dale, Mar 06 2012

A227514 Decimal expansion of the square root of 2/e.

Original entry on oeis.org

8, 5, 7, 7, 6, 3, 8, 8, 4, 9, 6, 0, 7, 0, 6, 7, 9, 6, 4, 8, 0, 1, 8, 9, 6, 4, 1, 2, 7, 8, 7, 7, 2, 4, 7, 8, 1, 2, 0, 7, 9, 8, 6, 0, 7, 7, 5, 2, 5, 7, 0, 2, 9, 3, 9, 9, 9, 7, 4, 1, 9, 4, 8, 1, 1, 7, 9, 4, 9, 9, 8, 4, 0, 1, 8, 3, 0, 0, 2, 1, 6, 0
Offset: 0

Views

Author

R. J. Mathar, Jul 14 2013

Keywords

Comments

This appears for example while integrating the product of the absolute value of H_2(x) exp(-x^2) over the real line, where H_2 is the second Hermite polynomial.

Examples

			0.85776388496070679648018...
		

Crossrefs

Programs

Formula

Square root of A135002 and also the ratio A002193 / A019774 .
From Amiram Eldar, Jul 08 2023: (Start)
Equals Product_{n>=1} (e / (1 + 1/(n-1/2))^n).
Equals Product_{n>=1} (e * (1 - 1/(n+1/2))^n). (End)
Showing 1-8 of 8 results.