cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091002 Number of walks of length n between non-adjacent nodes on the Petersen graph.

Original entry on oeis.org

0, 0, 1, 2, 9, 22, 77, 210, 673, 1934, 5973, 17578, 53417, 158886, 479389, 1432706, 4309041, 12905278, 38759525, 116191194, 348748345, 1045895510, 3138385581, 9413758642, 28244072129, 84726623982, 254191056757, 762550800650, 2287697141193, 6863001945094
Offset: 0

Views

Author

Paul Barry, Dec 12 2003

Keywords

Comments

Binomial transform of A091005.

Programs

  • GAP
    List([0..30], n -> (3^(n+1) - (-2)^(n+1) - 5)/30); # G. C. Greubel, Feb 01 2019
  • Magma
    [(3^(n+1) - (-2)^(n+1) - 5)/30: n in [0..30]]; // G. C. Greubel, Feb 01 2019
    
  • Maple
    a:=n->sum(binomial(n-k, k)*6^(k-1), k=1..n): seq(a(n),n=0..27); # Zerinvary Lajos, Sep 30 2006
  • Mathematica
    Table[(3^n -(-2)^n - 5)/30, {n, 40}] (* Vladimir Joseph Stephan Orlovsky, Jun 20 2011 *)
    LinearRecurrence[{2,5,-6}, {0,0,1}, 30] (* G. C. Greubel, Feb 01 2019 *)
  • PARI
    vector(30, n, n--; (3^(n+1) - (-2)^(n+1) - 5)/30) \\ G. C. Greubel, Feb 01 2019
    
  • Sage
    from sage.combinat.sloane_functions import recur_gen2b; it = recur_gen2b(1,2,1,6, lambda n: 1); [next(it) for i in range(0,29)] # Zerinvary Lajos, Jul 03 2008
    
  • Sage
    [(3^(n+1) - (-2)^(n+1) - 5)/30 for n in range(30)] # G. C. Greubel, Feb 01 2019
    

Formula

3^n = A091000(n) + 3*A091001(n) + 6*a(n).
G.f.: x^2/((1-x)*(1+2*x)*(1-3*x)).
a(n) = (3^(n+1) - (-2)^(n+1) - 5)/30.
a(n) = (A000244(n) - A001045(n+1)*(-1)^n + 4*A001045(n)*(-1)^n)/10.
a(n) = Sum_{k=1..n} binomial(n-k, k)*6^(k-1). - Zerinvary Lajos, Sep 30 2006
E.g.f.: (3*exp(3*x) + 2*exp(-2*x) - 5*exp(x))/30. - G. C. Greubel, Feb 01 2019