A091002 Number of walks of length n between non-adjacent nodes on the Petersen graph.
0, 0, 1, 2, 9, 22, 77, 210, 673, 1934, 5973, 17578, 53417, 158886, 479389, 1432706, 4309041, 12905278, 38759525, 116191194, 348748345, 1045895510, 3138385581, 9413758642, 28244072129, 84726623982, 254191056757, 762550800650, 2287697141193, 6863001945094
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,5,-6).
Programs
-
GAP
List([0..30], n -> (3^(n+1) - (-2)^(n+1) - 5)/30); # G. C. Greubel, Feb 01 2019
-
Magma
[(3^(n+1) - (-2)^(n+1) - 5)/30: n in [0..30]]; // G. C. Greubel, Feb 01 2019
-
Maple
a:=n->sum(binomial(n-k, k)*6^(k-1), k=1..n): seq(a(n),n=0..27); # Zerinvary Lajos, Sep 30 2006
-
Mathematica
Table[(3^n -(-2)^n - 5)/30, {n, 40}] (* Vladimir Joseph Stephan Orlovsky, Jun 20 2011 *) LinearRecurrence[{2,5,-6}, {0,0,1}, 30] (* G. C. Greubel, Feb 01 2019 *)
-
PARI
vector(30, n, n--; (3^(n+1) - (-2)^(n+1) - 5)/30) \\ G. C. Greubel, Feb 01 2019
-
Sage
from sage.combinat.sloane_functions import recur_gen2b; it = recur_gen2b(1,2,1,6, lambda n: 1); [next(it) for i in range(0,29)] # Zerinvary Lajos, Jul 03 2008
-
Sage
[(3^(n+1) - (-2)^(n+1) - 5)/30 for n in range(30)] # G. C. Greubel, Feb 01 2019
Formula
G.f.: x^2/((1-x)*(1+2*x)*(1-3*x)).
a(n) = (3^(n+1) - (-2)^(n+1) - 5)/30.
a(n) = Sum_{k=1..n} binomial(n-k, k)*6^(k-1). - Zerinvary Lajos, Sep 30 2006
E.g.f.: (3*exp(3*x) + 2*exp(-2*x) - 5*exp(x))/30. - G. C. Greubel, Feb 01 2019
Comments