cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091050 Number of divisors of n that are perfect powers.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 5, 1, 2, 2, 4, 1, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 15 2003

Keywords

Comments

Not the same as A005361: a(72)=5 <> A005361(72)=6.

Examples

			Divisors of n=108: {1,2,3,4,6,9,12,18,27,36,54,108},
a(108) = #{1^2, 2^2, 3^2, 3^3, 6^2} = 5.
		

Crossrefs

Programs

  • Haskell
    a091050 = sum . map a075802 . a027750_row
    -- Reinhard Zumkeller, Dec 13 2012
    
  • Mathematica
    ppQ[n_] := GCD @@ Last /@ FactorInteger@ n > 1; ppQ[1] = True; f[n_] := Length@ Select[ Divisors@ n, ppQ]; Array[f, 105] (* Robert G. Wilson v, Dec 12 2012 *)
  • PARI
    a(n) = 1+ sumdiv(n, d, ispower(d)>1); \\ Michel Marcus, Sep 21 2014
    
  • PARI
    a(n)={my(f=factor(n)[,2]); 1 + if(#f, sum(k=2, vecmax(f), moebius(k)*(1 - prod(i=1, #f, 1 + f[i]\k))))} \\ Andrew Howroyd, Aug 30 2020

Formula

a(n) = 1 iff n is squarefree: a(A005117(n)) = 1, a(A013929(n)) > 1.
a(p^k) = k for p prime, k>0: a(A000961(n)) = A025474(n).
a(n) = Sum_{k=1..A000005(n)} A075802(A027750(n,k)). - Reinhard Zumkeller, Dec 13 2012
G.f.: Sum_{k=i^j, i>=1, j>=2, excluding duplicates} x^k/(1 - x^k). - Ilya Gutkovskiy, Mar 20 2017
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 + A072102 = 1.874464... . - Amiram Eldar, Dec 31 2023

Extensions

Wrong formula deleted by Amiram Eldar, Apr 29 2020