cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091051 Sum of divisors of n that are perfect powers.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 13, 10, 1, 1, 5, 1, 1, 1, 29, 1, 10, 1, 5, 1, 1, 1, 13, 26, 1, 37, 5, 1, 1, 1, 61, 1, 1, 1, 50, 1, 1, 1, 13, 1, 1, 1, 5, 10, 1, 1, 29, 50, 26, 1, 5, 1, 37, 1, 13, 1, 1, 1, 5, 1, 1, 10, 125, 1, 1, 1, 5, 1, 1, 1, 58, 1, 1, 26, 5, 1, 1, 1, 29, 118, 1, 1, 5, 1, 1, 1, 13, 1, 10
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 15 2003

Keywords

Comments

a(n) = 1 iff n is squarefree: a(A005117(n))=1, a(A013929(n))>1;
a(p^k) = 1+(p^2)*(p^(k-1)-1)/(p-1) for p prime, k>0.
a(A000961(n)) = A086455(n)-A025473(n).

Examples

			Divisors of n=108: {1,2,3,4,6,9,12,18,27,36,54,108}, a(108) = 1^2 + 2^2 + 3^2 + 3^3 + 6^2 = 1+4+9+27+36 = 77.
		

Crossrefs

Differs from A183097 for the first time at n=72.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #*Boole[# == 1 || GCD @@ FactorInteger[#][[All, 2]] > 1]&]; Array[a, 90] (* Jean-François Alcover, May 09 2017 *)
  • PARI
    a(n) = sumdiv(n, d, d*((d==1) || ispower(d))); \\ Michel Marcus, Oct 02 2014

Formula

G.f.: Sum_{k=i^j, i>=1, j>=2, excluding duplicates} k*x^k/(1 - x^k). - Ilya Gutkovskiy, Mar 20 2017