cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A062692 Number of irreducible polynomials over F_2 of degree at most n.

Original entry on oeis.org

2, 3, 5, 8, 14, 23, 41, 71, 127, 226, 412, 747, 1377, 2538, 4720, 8800, 16510, 31042, 58636, 111013, 210871, 401428, 766150, 1465020, 2807196, 5387991, 10358999, 19945394, 38458184, 74248451, 143522117, 277737797, 538038783, 1043325198
Offset: 1

Views

Author

Gary L Mullen (mullen(AT)math.psu.edu), Jul 04 2001

Keywords

Comments

Number of binary pre-necklaces of length n. - Joerg Arndt, Jul 20 2013

Crossrefs

Partial sums of A001037.
Equals A001036 + 1.
Column k=2 of A143328. - Alois P. Heinz, Jul 20 2013

Programs

  • Maple
    with(numtheory):for n from 1 to 113 do sum3 := 0:for m from 1 to n do sum2 := 0:a := divisors(m):for h from 1 to nops(a) do sum2 := sum2+mobius(a[h])*2^(m/a[h]):end do:sum3 := sum3+sum2/m:end do:s[n] := sum3:end do:q := seq(s[j],j=1..113);
  • Mathematica
    a[n_] := Sum[1/m DivisorSum[m, MoebiusMu[#]*2^(m/#)&], {m, 1, n}]; Array[a, 34] (* Jean-François Alcover, Dec 07 2015 *)
    f[n_] := DivisorSum[n, MoebiusMu[#] * 2^(n/#) &] / n; Accumulate[Array[f, 30]] (* Amiram Eldar, Aug 24 2023 *)
  • PARI
    a(n)=sum(m=1,n, 1/m* sumdiv(m, d, moebius(d)*2^(m/d) ) ); /* Joerg Arndt, Jul 04 2011 */

Formula

a(n) = Sum_{m=1..n} (1/m)*Sum_{d | m } mu(d)*2^{m/d}.
a(n) = A091226(2^(n+1)).
G.f.: (1/(1 - x)) * Sum_{k>=1} mu(k)*log(1/(1 - 2*x^k))/k. - Ilya Gutkovskiy, Nov 11 2019

Extensions

More terms from Sascha Kurz, Mar 25 2002

A091232 How many more primes than irreducible GF(2)[X] polynomials there are in range [2^n,2^(n+1)].

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 4, 5, 13, 19, 38, 69, 129, 242, 451, 848, 1629, 3039, 5858, 11041, 21209, 40478, 77659, 148986, 286948, 551944, 1064949, 2056282, 3975512, 7694488, 14907270, 28908990, 56119905, 109022319, 211980753
Offset: 0

Views

Author

Antti Karttunen, Jan 03 2004

Keywords

Examples

			There are 5 primes (17,19,23,29,31) in range [16,32], while there are only 3 irreducible GF(2)[X]-polynomials in the same range: (19,25,31), thus a(4)=2.
		

Crossrefs

First differences of A091231.

Formula

a(0)=a(1)=0, a(n) = A036378(n+1)-A001037(n).
Showing 1-2 of 2 results.