cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A061775 Number of nodes in rooted tree with Matula-Goebel number n.

Original entry on oeis.org

1, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 5, 5, 6, 5, 6, 6, 6, 6, 6, 7, 6, 7, 6, 6, 7, 6, 6, 7, 6, 7, 7, 6, 6, 7, 7, 6, 7, 6, 7, 8, 7, 7, 7, 7, 8, 7, 7, 6, 8, 8, 7, 7, 7, 6, 8, 7, 7, 8, 7, 8, 8, 6, 7, 8, 8, 7, 8, 7, 7, 9, 7, 8, 8, 7, 8, 9, 7, 7, 8, 8, 7, 8, 8, 7, 9, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 7, 8, 8, 8, 9, 7, 7, 9
Offset: 1

Views

Author

N. J. A. Sloane, Jun 22 2001

Keywords

Comments

Let p(1)=2, ... denote the primes. The label f(T) for a rooted tree T is 1 if T has 1 node, otherwise f(T) = Product p(f(T_i)) where the T_i are the subtrees obtained by deleting the root and the edges adjacent to it. (Cf. A061773 for illustration).
Each n occurs A000081(n) times.

Examples

			a(4) = 3 because the rooted tree corresponding to the Matula-Goebel number 4 is "V", which has one root-node and two leaf-nodes, three in total.
See also the illustrations in A061773.
		

Crossrefs

One more than A196050.
Sum of entries in row n of irregular table A214573.
Number of entries in row n of irregular tables A182907, A206491, A206495 and A212620.
One less than the number of entries in row n of irregular tables A184187, A193401 and A193403.
Cf. A005517 (the position of the first occurrence of n).
Cf. A005518 (the position of the last occurrence of n).
Cf. A091233 (their difference plus one).
Cf. A214572 (Numbers k such that a(k) = 8).

Programs

  • Haskell
    import Data.List (genericIndex)
    a061775 n = genericIndex a061775_list (n - 1)
    a061775_list = 1 : g 2 where
       g x = y : g (x + 1) where
          y = if t > 0 then a061775 t + 1 else a061775 u + a061775 v - 1
              where t = a049084 x; u = a020639 x; v = x `div` u
    -- Reinhard Zumkeller, Sep 03 2013
    
  • Maple
    with(numtheory): a := proc (n) local u, v: u := n-> op(1, factorset(n)): v := n-> n/u(n): if n = 1 then 1 elif isprime(n) then 1+a(pi(n)) else a(u(n))+a(v(n))-1 end if end proc: seq(a(n), n = 1..108); # Emeric Deutsch, Sep 19 2011
  • Mathematica
    a[n_] := Module[{u, v}, u = FactorInteger[#][[1, 1]]&; v = #/u[#]&; If[n == 1, 1, If[PrimeQ[n], 1+a[PrimePi[n]], a[u[n]]+a[v[n]]-1]]]; Table[a[n], {n, 108}] (* Jean-François Alcover, Jan 16 2014, after Emeric Deutsch *)
  • PARI
    A061775(n) = if(1==n, 1, if(isprime(n), 1+A061775(primepi(n)), {my(pfs,t,i); pfs=factor(n); pfs[,1]=apply(t->A061775(t),pfs[,1]); (1-bigomega(n)) + sum(i=1, omega(n), pfs[i,1]*pfs[i,2])}));
    for(n=1, 10000, write("b061775.txt", n, " ", A061775(n)));
    \\ Antti Karttunen, Aug 16 2014
    
  • Python
    from functools import lru_cache
    from sympy import isprime, factorint, primepi
    @lru_cache(maxsize=None)
    def A061775(n):
        if n == 1: return 1
        if isprime(n): return 1+A061775(primepi(n))
        return 1+sum(e*(A061775(p)-1) for p, e in factorint(n).items()) # Chai Wah Wu, Mar 19 2022

Formula

a(1) = 1; if n = p_t (= the t-th prime), then a(n) = 1+a(t); if n = uv (u,v>=2), then a(n) = a(u)+a(v)-1.
a(n) = A091238(A091204(n)). - Antti Karttunen, Jan 2004
a(n) = A196050(n)+1. - Antti Karttunen, Aug 16 2014

Extensions

More terms from David W. Wilson, Jun 25 2001
Extended by Emeric Deutsch, Sep 19 2011

A109129 Width (i.e., number of non-root vertices having degree 1) of the rooted tree with Matula-Goebel number n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 2, 3, 2, 2, 1, 3, 2, 3, 2, 4, 2, 3, 3, 3, 3, 2, 2, 4, 2, 3, 3, 4, 2, 3, 1, 5, 2, 3, 3, 4, 3, 4, 3, 4, 2, 4, 3, 3, 3, 3, 2, 5, 4, 3, 3, 4, 4, 4, 2, 5, 4, 3, 2, 4, 3, 2, 4, 6, 3, 3, 3, 4, 3, 4, 3, 5, 3, 4, 3, 5, 3, 4, 2, 5, 4, 3, 2, 5, 3, 4, 3, 4, 4, 4, 4, 4, 2, 3, 4, 6, 2, 5, 3, 4
Offset: 1

Views

Author

Keith Briggs, Aug 17 2005

Keywords

Comments

The Matula-Goebel number of a rooted tree is defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m >= 2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.
A non-root vertex having degree 1 is called a leaf.
Every positive integer has a unique factorization (see A324924) into factors q(i) = prime(i)/i for i > 0. The number of ones in this factorization is a(n). For example, 30 = q(1)^3 q(2)^2 q(3), so a(30) = 3. - Gus Wiseman, Mar 23 2019

Examples

			a(7)=2 because the rooted tree with Matula-Goebel number 7 is the rooted tree Y.
a(2^m) = m because the rooted tree with Matula-Goebel number 2^m is a star with m edges.
		

Crossrefs

Programs

  • Haskell
    import Data.List (genericIndex)
    a109129 n = genericIndex a109129_list (n - 1)
    a109129_list = 0 : 1 : g 3 where
       g x = y : g (x + 1) where
         y = if t > 0 then a109129 t else a109129 r + a109129 s
             where t = a049084 x; r = a020639 x; s = x `div` r
    -- Reinhard Zumkeller, Sep 03 2013
    
  • Maple
    with(numtheory): a := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 0 elif n = 2 then 1 elif bigomega(n) = 1 then a(pi(n)) else a(r(n))+a(s(n)) end if end proc: seq(a(n), n = 1 .. 110);
  • Mathematica
    Nest[Function[{a, n}, Append[a, If[PrimeQ@ n, a[[PrimePi@ n]], Total@ Map[#2 a[[#1]] & @@ # &, FactorInteger[n]] ]]] @@ {#, Length@ # + 1} &, {0, 1}, 105] (* Michael De Vlieger, Mar 24 2019 *)
  • PARI
    ML(n) = if( n==1, 1, my(f=factor(n)); sum(k=1,matsize(f)[1],ML(primepi(f[k,1]))*f[k,2])) ;
    A109129(n) = if( n==1, 0, ML(n) ); \\ François Marques, Mar 16 2021
    
  • Python
    from functools import lru_cache
    from sympy import primepi, isprime, factorint
    @lru_cache(maxsize=None)
    def A109129(n):
        if n <= 2: return n-1
        if isprime(n): return A109129(primepi(n))
        return sum(e*A109129(p) for p, e in factorint(n).items()) # Chai Wah Wu, Mar 19 2022

Formula

a(1)=0; a(2)=1; if n = p(t) (= the t-th prime) and t >= 2, then a(n) = a(t); if n = rs (r, s >= 2), then a(n) = a(r) + a(s). The Maple program is based on this recursive formula.
The Gutman et al. references contain a different recursive formula.

Extensions

Typo in formula fixed by Reinhard Zumkeller, Sep 03 2013

A109082 Depth of rooted tree having Matula-Goebel number n.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 2, 1, 2, 3, 4, 2, 3, 2, 3, 1, 3, 2, 2, 3, 2, 4, 3, 2, 3, 3, 2, 2, 4, 3, 5, 1, 4, 3, 3, 2, 3, 2, 3, 3, 4, 2, 3, 4, 3, 3, 4, 2, 2, 3, 3, 3, 2, 2, 4, 2, 2, 4, 4, 3, 3, 5, 2, 1, 3, 4, 3, 3, 3, 3, 4, 2, 3, 3, 3, 2, 4, 3, 5, 3, 2, 4, 4, 2, 3, 3, 4, 4, 3, 3, 3, 3, 5, 4, 3, 2, 4, 2, 4, 3
Offset: 1

Views

Author

Keith Briggs, Aug 17 2005

Keywords

Comments

Another term for depth is height.
Starting with n, a(n) is the number of times one must take the product of prime indices (A003963) to reach 1. - Gus Wiseman, Mar 27 2019

Examples

			a(7) = 2 because the rooted tree with Matula-Goebel number 7 is the 3-edge rooted tree Y of height 2.
		

Crossrefs

A left inverse of A007097.
Cf. A000081, A000720, A001222, A109129, A112798, A196050, A290822, A317713, A320325, A324927 (positions of 2), A324928 (positions of 3), A325032.
This statistic is counted by A034781, ordered A080936.
The ordered version is A358379.
For node-height instead of edge-height we have A358552.

Programs

  • Maple
    with(numtheory): a := proc(n) option remember; if n = 1 then 0 elif isprime(n) then 1+a(pi(n)) else max((map (p->a(p), factorset(n)))[]) end if end proc: seq(a(n), n = 1 .. 100); # Emeric Deutsch, Sep 16 2011
  • Mathematica
    a [n_] := a[n] = If[n == 1, 0, If[PrimeQ[n], 1+a[PrimePi[n]], Max[Map[a, FactorInteger[n][[All, 1]]]]]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, May 06 2014, after Emeric Deutsch *)
  • PARI
    a(n) = my(v=factor(n)[,1],d=0); while(#v,d++; v=fold(setunion, apply(p->factor(primepi(p))[,1]~, v))); d; \\ Kevin Ryde, Sep 21 2020
    
  • Python
    from functools import lru_cache
    from sympy import isprime, primepi, primefactors
    @lru_cache(maxsize=None)
    def A109082(n):
        if n == 1 : return 0
        if isprime(n): return 1+A109082(primepi(n))
        return max(A109082(p) for p in primefactors(n)) # Chai Wah Wu, Mar 19 2022

Formula

a(1)=0; if n is the t-th prime, then a(n) = 1 + a(t); if n is composite, n=t*s, then a(n) = max(a(t),a(s)). The Maple program is based on this.
a(A007097(n)) = n.
a(n) = A358552(n) - 1. - Gus Wiseman, Nov 27 2022

Extensions

Edited by Emeric Deutsch, Sep 16 2011

A005517 Smallest label f(T) given to a rooted tree T with n nodes in Matula-Goebel labeling.

Original entry on oeis.org

1, 2, 3, 5, 9, 15, 25, 45, 75, 125, 225, 375, 625, 1125, 1875, 3125, 5625, 9375, 15625, 28125, 46875, 78125, 140625, 234375, 390625, 703125, 1171875, 1953125, 3515625, 5859375, 9765625, 17578125, 29296875, 48828125
Offset: 1

Views

Author

Keywords

Comments

Let p(1)=2, ... denote the primes. The label f(T) for a rooted tree T is 1 if T has 1 node, otherwise f(T) = Product p(f(T_i)) where the T_i are the subtrees obtained by deleting the root and the edges adjacent to it.
For n >= 3, this is also the minimum number of Hamiltonian paths in a strong tournament with n vertices (Busch). - Gordon Royle, Jan 24 2022

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A061773. See A005518 for the largest value of f(T).

Programs

  • Maple
    a := proc (n) if n = 1 then 1 elif n = 2 then 2 elif `mod`(n, 3) = 0 then 3*5^((1/3)*n-1) elif `mod`(n, 3) = 1 then 5^((1/3)*n-1/3) else 9*5^((1/3)*n-5/3) end if end proc: seq(a(n), n = 1 .. 34); # Emeric Deutsch, Apr 15 2012
    A005517:=(-1-2*z-3*z**2+z**4)/(-1+5*z**3); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Join[{1,2},LinearRecurrence[{0,0,5},{3,5,9},40]] (* Harvey P. Dale, Feb 25 2012 *)
    a[n_] := Which[n == 1, 1, n == 2, 2, Mod[n, 3] == 0, 3*5^((1/3)*n-1), Mod[n, 3] == 1, 5^((1/3)*n-1/3), True, 9*5^((1/3)*n-5/3)]; Table[a[n], {n, 1, 34}] (* Jean-François Alcover, Mar 06 2014, after Emeric Deutsch *)

Formula

a(1)=1; a(2)=2; a(n) = 3*5^((n-3)/3) if n=0 (mod 3); a(n)=5^((n-1)/3) if n>=4 and n=1 (mod 3); a(n)=9*5^((n-5)/3) if n>=5 and n = 2 (mod 3) (see the Gutman and Ivic 1994 paper). - Emeric Deutsch, Apr 15 2012
G.f.: z*(1+2*z+3*z^2-z^4)/(1-5*z^3) (conjectured by Simon Plouffe).
a(n+3) = 5*a(n) for n >= 3 under plausible assumptions about growth of prime numbers. - David W. Wilson, Jul 05 2001
A091233(n) = (A005518(n)-a(n))+1. - Antti Karttunen, May 24 2004

A005518 Largest label f(T) given to a rooted tree T with n nodes in Matula-Goebel labeling.

Original entry on oeis.org

1, 2, 4, 8, 19, 67, 331, 2221, 19577, 219613, 3042161, 50728129, 997525853, 22742734291, 592821132889, 17461204521323, 575411103069067, 21034688742654437, 846729487306354343
Offset: 1

Views

Author

Keywords

Comments

Let prime(1)=2, ... denote the primes. The label f(T) for a rooted tree T is 1 if T has 1 node, otherwise f(T) = Product prime(f(T_i)) where the T_i are the subtrees obtained by deleting the root and the edges adjacent to it.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Apart from initial terms, same as A057452.
Cf. A061773. See A005517 for the smallest value of f(T).

Programs

Formula

a(1)=1; a(2)=2; a(3)=4; a(4)=8; a(n) = the a(n-1)-th prime (see the Gutman and Ivic 1994 paper). - Emeric Deutsch, Apr 15 2012
Under plausible assumptions about the growth of the primes, for n >= 4, a(n+1) = a(n)-th prime and A005518(n) = A057452(n-3). - David W. Wilson, Jul 09 2001
A091233(n) = (a(n)-A005517(n))+1. - Antti Karttunen, May 24 2004

Extensions

More terms from David W. Wilson, Jul 09 2001
a(17)-a(19) from Robert G. Wilson v, Mar 07 2017 using Kim Walisch's primecount

A091241 Size of range [Smallest GF2X-Matula number coding a tree of n nodes, Largest GF2X-Matula number coding a tree of n nodes].

Original entry on oeis.org

1, 1, 2, 6, 43, 311, 3039, 40323
Offset: 1

Views

Author

Antti Karttunen, Jan 03 2004

Keywords

Crossrefs

Compare to A091233 and A000081.

Formula

a(n) = (A091240(n)-A091239(n))+1.
Showing 1-6 of 6 results.