cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 77 results. Next

A048720 Multiplication table {0..i} X {0..j} of binary polynomials (polynomials over GF(2)) interpreted as binary vectors, then written in base 10; or, binary multiplication without carries.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 4, 3, 0, 0, 4, 6, 6, 4, 0, 0, 5, 8, 5, 8, 5, 0, 0, 6, 10, 12, 12, 10, 6, 0, 0, 7, 12, 15, 16, 15, 12, 7, 0, 0, 8, 14, 10, 20, 20, 10, 14, 8, 0, 0, 9, 16, 9, 24, 17, 24, 9, 16, 9, 0, 0, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 0, 0, 11, 20, 27, 32, 27, 20, 27, 32, 27, 20, 11, 0
Offset: 0

Views

Author

Antti Karttunen, Apr 26 1999

Keywords

Comments

Essentially same as A091257 but computed starting from offset 0 instead of 1.
Each polynomial in GF(2)[X] is encoded as the number whose binary representation is given by the coefficients of the polynomial, e.g., 13 = 2^3 + 2^2 + 2^0 = 1101_2 encodes 1*X^3 + 1*X^2 + 0*X^1 + 1*X^0 = X^3 + X^2 + X^0. - Antti Karttunen and Peter Munn, Jan 22 2021
To listen to this sequence, I find instrument 99 (crystal) works well with the other parameters defaulted. - Peter Munn, Nov 01 2022

Examples

			Top left corner of array:
  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 ...
  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 ...
  0  2  4  6  8 10 12 14 16 18 20 22 24 26 28 30 ...
  0  3  6  5 12 15 10  9 24 27 30 29 20 23 18 17 ...
  ...
From _Antti Karttunen_ and _Peter Munn_, Jan 23 2021: (Start)
Multiplying 10 (= 1010_2) and 11 (= 1011_2), in binary results in:
     1011
  *  1010
  -------
   c1011
  1011
  -------
  1101110  (110 in decimal),
and we see that there is a carry-bit (marked c) affecting the result.
In carryless binary multiplication, the second part of the process (in which the intermediate results are summed) looks like this:
    1011
  1011
  -------
  1001110  (78 in decimal).
(End)
		

Crossrefs

Cf. A051776 (Nim-product), A091257 (subtable).
Carryless multiplication in other bases: A325820 (3), A059692 (10).
Ordinary {0..i} * {0..j} multiplication table: A004247 and its differences from this: A061858 (which lists further sequences related to presence/absence of carry in binary multiplication).
Carryless product of the prime factors of n: A234741.
Binary irreducible polynomials ("X-primes"): A014580, factorization table: A256170, table of "X-powers": A048723, powers of 3: A001317, rearranged subtable with distinct terms (comparable to A054582): A277820.
See A014580 for further sequences related to the difference between factorization into GF(2)[X] irreducibles and ordinary prime factorization of the integer encoding.
Row/column 3: A048724 (even bisection of A003188), 5: A048725, 6: A048726, 7: A048727; main diagonal: A000695.
Associated additive operation: A003987.
Equivalent sequences, as compared with standard integer multiplication: A048631 (factorials), A091242 (composites), A091255 (gcd), A091256 (lcm), A280500 (division).
See A091202 (and its variants) and A278233 for maps from/to ordinary multiplication.
See A115871, A115872 and A277320 for tables related to cross-domain congruences.

Programs

  • Maple
    trinv := n -> floor((1+sqrt(1+8*n))/2); # Gives integral inverses of the triangular numbers
    # Binary multiplication of nn and mm, but without carries (use XOR instead of ADD):
    Xmult := proc(nn,mm) local n,m,s; n := nn; m := mm; s := 0; while (n > 0) do if(1 = (n mod 2)) then s := XORnos(s,m); fi; n := floor(n/2); # Shift n right one bit. m := m*2; # Shift m left one bit. od; RETURN(s); end;
  • Mathematica
    trinv[n_] := Floor[(1 + Sqrt[1 + 8*n])/2];
    Xmult[nn_, mm_] := Module[{n = nn, m = mm, s = 0}, While[n > 0, If[1 == Mod[n, 2], s = BitXor[s, m]]; n = Floor[n/2]; m = m*2]; Return[s]];
    a[n_] := Xmult[(trinv[n] - 1)*((1/2)*trinv[n] + 1) - n, n - (trinv[n]*(trinv[n] - 1))/2];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Mar 16 2015, updated Mar 06 2016 after Maple *)
  • PARI
    up_to = 104;
    A048720sq(b,c) = fromdigits(Vec(Pol(binary(b))*Pol(binary(c)))%2, 2);
    A048720list(up_to) = { my(v = vector(1+up_to), i=0); for(a=0, oo, for(col=0, a, i++; if(i > up_to, return(v)); v[i] = A048720sq(col, a-col))); (v); };
    v048720 = A048720list(up_to);
    A048720(n) = v048720[1+n]; \\ Antti Karttunen, Feb 15 2021

Formula

a(n) = Xmult( (((trinv(n)-1)*(((1/2)*trinv(n))+1))-n), (n-((trinv(n)*(trinv(n)-1))/2)) );
T(2b, c)=T(c, 2b)=T(b, 2c)=2T(b, c); T(2b+1, c)=T(c, 2b+1)=2T(b, c) XOR c - Henry Bottomley, Mar 16 2001
For n >= 0, A003188(2n) = T(n, 3); A003188(2n+1) = T(n, 3) XOR 1, where XOR is the bitwise exclusive-or operator, A003987. - Peter Munn, Feb 11 2021

A091225 Characteristic function of A014580: 1 if the n-th GF(2)[X] polynomial is irreducible, 0 otherwise.

Original entry on oeis.org

0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0
Offset: 0

Views

Author

Antti Karttunen, Jan 03 2004

Keywords

Crossrefs

a(n) = A010051(A091203(n)) = A010051(A091205(n)). Partial sums give A091226. Cf. A091227. Complementary to A091247.

Programs

  • PARI
    a(n) = polisirreducible(Pol(binary(n))*Mod(1, 2)); \\ Michel Marcus, Nov 11 2017

Extensions

Data section extended up to a(120) by Antti Karttunen, Jan 01 2023

A091242 Reducible polynomials over GF(2), coded in binary.

Original entry on oeis.org

4, 5, 6, 8, 9, 10, 12, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 88
Offset: 1

Views

Author

Antti Karttunen, Jan 03 2004

Keywords

Comments

"Coded in binary" means that a polynomial a(n)*X^n+...+a(0)*X^0 over GF(2) is represented by the binary number a(n)*2^n+...+a(0)*2^0 in Z (where a(k)=0 or 1). - M. F. Hasler, Aug 18 2014
The reducible polynomials in GF(2)[X] are the analog to the composite numbers A002808 in the integers.
It follows that the sequence is closed under application of A048720(.,.), which effects multiplication of the coded polynomials. It is also closed under application of blue code, A193231. The majority of the terms are coded multiples of X^1 (represented by 2) and/or X^1+1 (represented by 3): see A005843 and A001969 respectively. A246157 lists the other terms. - Peter Munn, Apr 20 2021

Examples

			For example, 5 = 101 in binary encodes the polynomial x^2+1 which is factored as (x+1)^2 in the polynomial ring GF(2)[X].
		

Crossrefs

Inverse: A091246. Almost complement of A014580. Union of A091209 & A091212. First differences: A091243. Characteristic function: A091247. In binary format: A091254.
Number of degree-n reducible polynomials: A058766.
Subsequences: A001969\{0,3}, A005843\{0,2}, A246156, A246157, A246158, A316970.

Programs

  • Maple
    filter:= proc(n) local L;
      L:= convert(n,base,2);
      not Irreduc(add(L[i]*x^(i-1),i=1..nops(L))) mod 2
    end proc:
    select(filter, [$2..200]); # Robert Israel, Aug 30 2018
  • Mathematica
    okQ[n_] := Module[{x, id = IntegerDigits[n, 2] // Reverse}, !IrreduciblePolynomialQ[id.x^Range[0, Length[id]-1], Modulus -> 2]];
    Select[Range[2, 200], okQ] (* Jean-François Alcover, Jan 04 2022 *)

Extensions

Edited by M. F. Hasler, Aug 18 2014

A091255 Square array computed from gcd(P(x),P(y)) where P(x) and P(y) are polynomials with coefficients in {0,1} given by the binary expansions of x and y, and the polynomial calculation is done over GF(2), with the result converted back to a binary number, and then expressed in decimal. Array is symmetric, and is read by falling antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 3, 2, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 2, 1, 2, 5, 2, 1, 2, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 2, 3, 4, 1, 6, 1, 4, 3, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 3, 2, 7, 2, 3, 2, 1, 2, 1, 1, 1, 3, 1, 5, 3, 1, 1, 3, 5, 1, 3, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 03 2004

Keywords

Comments

Array is read by antidiagonals, with (x,y) = (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), ...
Analogous to A003989.
"Coded in binary" means that a polynomial a(n)*X^n+...+a(0)*X^0 over GF(2) is represented by the binary number a(n)*2^n+...+a(0)*2^0 in Z (where a(k)=0 or 1).

Examples

			The top left 17 X 17 corner of the array:
      1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
    +---------------------------------------------------------------
   1: 1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1,  1,  1,  1,  1,  1,  1, ...
   2: 1, 2, 1, 2, 1, 2, 1, 2, 1,  2,  1,  2,  1,  2,  1,  2,  1, ...
   3: 1, 1, 3, 1, 3, 3, 1, 1, 3,  3,  1,  3,  1,  1,  3,  1,  3, ...
   4: 1, 2, 1, 4, 1, 2, 1, 4, 1,  2,  1,  4,  1,  2,  1,  4,  1, ...
   5: 1, 1, 3, 1, 5, 3, 1, 1, 3,  5,  1,  3,  1,  1,  5,  1,  5, ...
   6: 1, 2, 3, 2, 3, 6, 1, 2, 3,  6,  1,  6,  1,  2,  3,  2,  3, ...
   7: 1, 1, 1, 1, 1, 1, 7, 1, 7,  1,  1,  1,  1,  7,  1,  1,  1, ...
   8: 1, 2, 1, 4, 1, 2, 1, 8, 1,  2,  1,  4,  1,  2,  1,  8,  1, ...
   9: 1, 1, 3, 1, 3, 3, 7, 1, 9,  3,  1,  3,  1,  7,  3,  1,  3, ...
  10: 1, 2, 3, 2, 5, 6, 1, 2, 3, 10,  1,  6,  1,  2,  5,  2,  5, ...
  11: 1, 1, 1, 1, 1, 1, 1, 1, 1,  1, 11,  1,  1,  1,  1,  1,  1, ...
  12: 1, 2, 3, 4, 3, 6, 1, 4, 3,  6,  1, 12,  1,  2,  3,  4,  3, ...
  13: 1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1,  1, 13,  1,  1,  1,  1, ...
  14: 1, 2, 1, 2, 1, 2, 7, 2, 7,  2,  1,  2,  1, 14,  1,  2,  1, ...
  15: 1, 1, 3, 1, 5, 3, 1, 1, 3,  5,  1,  3,  1,  1, 15,  1, 15, ...
  16: 1, 2, 1, 4, 1, 2, 1, 8, 1,  2,  1,  4,  1,  2,  1, 16,  1, ...
  17: 1, 1, 3, 1, 5, 3, 1, 1, 3,  5,  1,  3,  1,  1,  15, 1, 17, ...
  ...
3, which is "11" in binary, encodes polynomial X + 1, while 7 ("111" in binary) encodes polynomial X^2 + X + 1, whereas 9 ("1001" in binary), encodes polynomial X^3 + 1. Now (X + 1)(X^2 + X + 1) = (X^3 + 1) when the polynomials are multiplied over GF(2), or equally, when multiplication of integers 3 and 7 is done as a carryless base-2 product (A048720(3,7) = 9). Thus it follows that A(3,9) = A(9,3) = 3 and A(7,9) = A(9,7) = 7.
Furthermore, 5 ("101" in binary) encodes polynomial X^2 + 1 which is equal to (X + 1)(X + 1) in GF(2)[X], thus A(5,9) = A(9,5) = 3, as the irreducible polynomial (X + 1) is the only common factor for polynomials X^2 + 1 and X^3 + 1.
		

Crossrefs

Cf. also A327856 (the upper left triangular section of this array), A327857.

Programs

  • PARI
    A091255sq(a,b) = fromdigits(Vec(lift(gcd(Pol(binary(a))*Mod(1, 2),Pol(binary(b))*Mod(1, 2)))),2); \\ Antti Karttunen, Aug 12 2019

Formula

A(x,y) = A(y,x) = A(x, A003987(x,y)) = A(A003987(x,y), y), where A003987 gives the bitwise-XOR of its two arguments. - Antti Karttunen, Sep 28 2019

Extensions

Data section extended up to a(105), examples added by Antti Karttunen, Sep 28 2019

A091206 Primes whose binary representation encodes a polynomial irreducible over GF(2).

Original entry on oeis.org

2, 3, 7, 11, 13, 19, 31, 37, 41, 47, 59, 61, 67, 73, 97, 103, 109, 131, 137, 157, 167, 191, 193, 211, 229, 239, 241, 283, 313, 379, 397, 419, 433, 463, 487, 499, 557, 563, 587, 601, 607, 613, 617, 631, 647, 661, 677, 701, 719, 757, 761, 769, 787, 827, 859
Offset: 1

Views

Author

Antti Karttunen, Jan 03 2004

Keywords

Comments

"Encoded in binary representation" means that a polynomial a(n)*X^n+...+a(0)*X^0 over GF(2) is represented by the binary number a(n)*2^n+...+a(0)*2^0 in Z (where each coefficient a(k) = 0 or 1).
Subsequence with Hamming weight nonprime starts 2, 1019, 1279, 1531, 1663, 1759, 1783, 1789, 2011, 2027, 2543, 2551, ... [Joerg Arndt, Nov 01 2013]. These are now given by A255569. - Antti Karttunen, May 14 2015

Crossrefs

Intersection of A014580 and A000040.
Apart from a(2) = 3 a subsequence of A027697. The numbers in A027697 but not here are listed in A238186.
Also subsequence of A235045 (its primes. Cf. also A235041-A235042).
Cf. A091209 (Primes whose binary expansion encodes a polynomial reducible over GF(2)), A091212 (Composite, and reducible over GF(2)), A091214 (Composite, but irreducible over GF(2)), A257688 (either 1, prime or irreducible over GF(2)).
Subsequence: A255569.

Programs

  • Mathematica
    okQ[p_] := Module[{id, pol, x}, id = IntegerDigits[p, 2] // Reverse; pol = id.x^Range[0, Length[id] - 1]; IrreduciblePolynomialQ[pol, Modulus -> 2]];
    Select[Prime[Range[1000]], okQ] (* Jean-François Alcover, Feb 06 2023 *)
  • PARI
    is(n)=polisirreducible( Mod(1,2) * Pol(digits(n,2)) );
    forprime(n=2,10^3,if (is(n), print1(n,", ")));
    \\ Joerg Arndt, Nov 01 2013

Formula

a(n) = A000040(A091207(n)) = A014580(A091208(n)).

A091209 Primes whose binary representation encodes a polynomial reducible over GF(2).

Original entry on oeis.org

5, 17, 23, 29, 43, 53, 71, 79, 83, 89, 101, 107, 113, 127, 139, 149, 151, 163, 173, 179, 181, 197, 199, 223, 227, 233, 251, 257, 263, 269, 271, 277, 281, 293, 307, 311, 317, 331, 337, 347, 349, 353, 359, 367, 373, 383, 389, 401, 409, 421, 431, 439, 443, 449, 457, 461, 467, 479, 491, 503, 509, 521, 523
Offset: 1

Views

Author

Antti Karttunen, Jan 03 2004

Keywords

Comments

"Encoded in binary representation" means that a polynomial a(n)*X^n+...+a(0)*X^0 over GF(2) is represented by the binary number a(n)*2^n+...+a(0)*2^0 in Z (where each coefficient a(k) = 0 or 1).
Except for 3, all primes with even Hamming weight (A027699) are terms, see A238186 for the subsequence of primes with odd Hamming weight. [Joerg Arndt and Antti Karttunen, Feb 19 2014]

Crossrefs

Intersection of A000040 and A091242.
Disjoint union of A238186 and (A027699 \ {3}).
Left inverse: A235043.
Cf. A091206 (Primes whose binary expansion encodes a polynomial irreducible over GF(2)), A091212 (Composite, and reducible over GF(2)), A091214 (Composite, but irreducible over GF(2)).

Programs

  • Maple
    Primes:= select(isprime,[2,seq(2*i+1,i=1..1000)]):
    filter:= proc(n) local L,x;
        L:= convert(n,base,2);
        Irreduc(add(L[i]*x^(i-1),i=1..nops(L))) mod 2;
    end proc:
    remove(filter,Primes); # Robert Israel, May 17 2015
  • Mathematica
    Select[Prime[Range[2, 100]], !IrreduciblePolynomialQ[bb = IntegerDigits[#, 2]; Sum[bb[[k]] x^(k-1), {k, 1, Length[bb]}], Modulus -> 2]&] (* Jean-François Alcover, Feb 28 2016 *)
  • PARI
    forprime(p=2, 10^3, if( ! polisirreducible( Mod(1,2)*Pol(binary(p)) ), print1(p,", ") ) ); \\ Joerg Arndt, Feb 19 2014

Formula

a(n) = A000040(A091210(n)) = A091242(A091211(n)).
Other identities. For all n >= 1:
A235043(a(n)) = n. [A235043 works as a left inverse of this sequence.]

A091205 Factorization and index-recursion preserving isomorphism from binary codes of GF(2) polynomials to integers.

Original entry on oeis.org

0, 1, 2, 3, 4, 9, 6, 5, 8, 15, 18, 7, 12, 23, 10, 27, 16, 81, 30, 13, 36, 25, 14, 69, 24, 11, 46, 45, 20, 21, 54, 19, 32, 57, 162, 115, 60, 47, 26, 63, 72, 61, 50, 33, 28, 135, 138, 17, 48, 35, 22, 243, 92, 39, 90, 37, 40, 207, 42, 83, 108, 29, 38, 75, 64, 225, 114, 103
Offset: 0

Views

Author

Antti Karttunen, Jan 03 2004

Keywords

Comments

This "deeply multiplicative" bijection is one of the deep variants of A091203 which satisfy most of the same identities as the latter, but it additionally preserves also the structures where we recurse on irreducible polynomial's A014580-index. E.g., we have: A091238(n) = A061775(a(n)). The reason this holds is that when the permutation is restricted to the binary codes for irreducible polynomials over GF(2) (A014580), it induces itself: a(n) = A049084(a(A014580(n))).
On the other hand, when this permutation is restricted to the union of {1} and reducible polynomials over GF(2) (A091242), permutation A245813 is induced.

Crossrefs

Programs

  • PARI
    allocatemem(123456789);
    v091226 = vector(2^22);
    isA014580(n)=polisirreducible(Pol(binary(n))*Mod(1, 2)); \\ This function from Charles R Greathouse IV
    n=2; while((n < 2^22), if(isA014580(n), v091226[n] = v091226[n-1]+1, v091226[n] = v091226[n-1]); n++)
    A091226(n) = v091226[n];
    A091205(n) = if(n<=1,n,if(isA014580(n),prime(A091205(A091226(n))),{my(irfs,t); irfs=subst(lift(factor(Mod(1,2)*Pol(binary(n)))),x,2); irfs[,1]=apply(t->A091205(t),irfs[,1]); factorback(irfs)}));
    for(n=0, 8192, write("b091205.txt", n, " ", A091205(n)));
    \\ Antti Karttunen, Aug 16 2014

Formula

a(0)=0, a(1)=1. For n that is coding an irreducible polynomial, that is if n = A014580(i), we have a(n) = A000040(a(i)) and for reducible polynomials a(ir_i X ir_j X ...) = a(ir_i) * a(ir_j) * ..., where ir_i = A014580(i), X stands for carryless multiplication of polynomials over GF(2) (A048720) and * for the ordinary multiplication of integers (A004247).
As a composition of related permutations:
a(n) = A245821(A245704(n)).
Other identities.
For all n >= 0, the following holds:
a(A091230(n)) = A007097(n). [Maps iterates of A014580 to the iterates of primes. Permutation A245704 has the same property.]
For all n >= 1, the following holds:
A010051(a(n)) = A091225(n). [After a(1)=1, maps binary representations of irreducible GF(2) polynomials, A014580, bijectively to primes and the binary representations of corresponding reducible polynomials, A091242, to composite numbers, in some order. The permutations A091203, A106443, A106445, A106447, A235042 and A245704 have the same property.]

Extensions

Name changed by Antti Karttunen, Aug 16 2014

A091226 Number of irreducible GF(2)[X]-polynomials in range [0,n].

Original entry on oeis.org

0, 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16
Offset: 0

Views

Author

Antti Karttunen, Jan 03 2004

Keywords

Comments

Analogous to A000720.

Crossrefs

Partial sums of A091225. A062692(n) = a(2^n).

A091222 Number of irreducible polynomials dividing n-th GF(2)[X]-polynomial, counted with multiplicity.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 1, 3, 2, 3, 1, 3, 1, 2, 3, 4, 4, 3, 1, 4, 2, 2, 2, 4, 1, 2, 3, 3, 2, 4, 1, 5, 2, 5, 2, 4, 1, 2, 3, 5, 1, 3, 2, 3, 4, 3, 1, 5, 2, 2, 5, 3, 2, 4, 1, 4, 3, 3, 1, 5, 1, 2, 3, 6, 4, 3, 1, 6, 2, 3, 2, 5, 1, 2, 4, 3, 2, 4, 2, 6, 2, 2, 3, 4, 6, 3, 1, 4, 2, 5, 1, 4, 2, 2, 3, 6, 1, 3, 3, 3, 3, 6
Offset: 1

Views

Author

Antti Karttunen, Jan 03 2004

Keywords

Crossrefs

Programs

  • Maple
    for n from 1 to 1000 do
      L:= convert(n,base,2);
      P:= add(L[i]*X^(i-1),i=1..nops(L));
      R:= Factors(P) mod 2;
      a[n]:= add(r[2],r=R[2]);
    od:
    seq(a[n],n=1..1000); # Robert Israel, Jun 07 2015
  • PARI
    a(n)=my(fm=factor(Pol(binary(n))*Mod(1, 2))); sum(k=1, #fm~, fm[k, 2]) \\ Franklin T. Adams-Watters, Jun 07 2015

Formula

a(n) = A001222(A091203(n)) = A001222(A091205(n)).
a(A000051(n)) = A091248(n).

A091202 Factorization-preserving isomorphism from nonnegative integers to binary codes for polynomials over GF(2).

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 6, 11, 8, 5, 14, 13, 12, 19, 22, 9, 16, 25, 10, 31, 28, 29, 26, 37, 24, 21, 38, 15, 44, 41, 18, 47, 32, 23, 50, 49, 20, 55, 62, 53, 56, 59, 58, 61, 52, 27, 74, 67, 48, 69, 42, 43, 76, 73, 30, 35, 88, 33, 82, 87, 36, 91, 94, 39, 64, 121, 46, 97, 100, 111, 98
Offset: 0

Views

Author

Antti Karttunen, Jan 03 2004

Keywords

Comments

E.g. we have the following identities: A000005(n) = A091220(a(n)), A001221(n) = A091221(a(n)), A001222(n) = A091222(a(n)), A008683(n) = A091219(a(n)), A014580(n) = a(A000040(n)), A049084(n) = A091227(a(n)).

Crossrefs

Inverse: A091203.
Several variants exist: A235041, A091204, A106442, A106444, A106446.
Cf. also A302023, A302025, A305417, A305427 for other similar permutations.

Programs

  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A091225(n) = polisirreducible(Pol(binary(n))*Mod(1, 2));
    A305420(n) = { my(k=1+n); while(!A091225(k),k++); (k); };
    A305421(n) = { my(f = subst(lift(factor(Pol(binary(n))*Mod(1, 2))),x,2)); for(i=1,#f~,f[i,1] = Pol(binary(A305420(f[i,1])))); fromdigits(Vec(factorback(f))%2,2); };
    A091202(n) = if(n<=1,n,if(!(n%2),2*A091202(n/2),A305421(A091202(A064989(n))))); \\ Antti Karttunen, Jun 10 2018

Formula

a(0)=0, a(1)=1, a(p_i) = A014580(i) for primes p_i with index i and for composites a(p_i * p_j * ...) = a(p_i) X a(p_j) X ..., where X stands for carryless multiplication of GF(2)[X] polynomials (A048720).
Other identities. For all n >= 1, the following holds:
A091225(a(n)) = A010051(n). [Maps primes to binary representations of irreducible GF(2) polynomials, A014580, and nonprimes to union of {1} and the binary representations of corresponding reducible polynomials, A091242. The permutations A091204, A106442, A106444, A106446, A235041 and A245703 have the same property.]
From Antti Karttunen, Jun 10 2018: (Start)
For n <= 1, a(n) = n, for n > 1, a(n) = 2*a(n/2) if n is even, and if n is odd, then a(n) = A305421(a(A064989(n))).
a(n) = A305417(A156552(n)) = A305427(A243071(n)).
(End)
Showing 1-10 of 77 results. Next